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Particle Dispersion on Rapidly Folding Random Heteropolymers
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We investigate the dynamics of a particle moving randomly along a disordered heteropolymer
subjected to rapid conformational changes which induce superdiffusive motion in chemical coordinates.
We study the antagonistic interplay between the enhanced diffusion and the quenched disorder. The
dispersion speed exhibits universal behavior independent of the folding statistics. On the other hand it is
strongly affected by the structure of the disordered potential. The results may serve as a reference point
for a number of translocation phenomena observed in biological cells, such as protein dynamics on
DNA strands.
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dom heteropolymers. We focus on the interplay between constant. The function,
The study of random motion on complex structures is
essential to the understanding of dispersion phenomena
observed in numerous physical systems, ranging from
epidemics spreading in complex networks and informa-
tion transport in modern communication networks such
as the Internet [1,2]. In biological cells, the transport of
macromolecules is accomplished by a variety of trans-
location processes in which carrier molecules move along
complex fibrous polymer networks, e.g., myosin trans-
location on actin fibers or transport on microtubules [3].
If the involved topologies are scale free, diffusion is often
anomalous, i.e., the mean square displacement of a par-
ticle violates the linear dependence on time hX2�t�i � t�

with 0<� � 1 [4]. Depending on the underlying micro-
scopic dynamics, subdiffusive (� < 1) as well as super-
diffusive (� > 1) behavior is observed. For instance,
when a particle moves along a polymer in a complex
folding state, it may jump to a neighboring location
in Euclidean space which is distant in chemical coordi-
nates. Effectively, the particle moves superdiffusively
along the chain [5] and performs a random walk
known as a Lévy flight. This mechanism may explain
fast target localization of regulatory proteins moving
along DNA strands [6]. Lévy flights have been observed
in a variety of systems, ranging from chaotic systems [7]
to foraging animals [8,9] and climate changes [10]. Lévy
flights are characterized by an exponent 0<�< 2
which quantifies the degree of superdiffusion and is re-
lated to the heuristic dispersion relation X�t� � t1=�.
When Lévy flights successfully mimic single trajectories,
the associated stochastic evolution equations are no lon-
ger of the Fokker-Planck type but rather generalizations
thereof which involve fractional differential operators.
Fractional models have contributed considerably to the
understanding of these systems [11–15]. Of particular
interest are systems in which the cause for superdiffusive
dispersion and the heterogeneity of the environment in-
teract antagonistically.

In this Letter we introduce and investigate a model for
superdiffusive particle dispersion on flexibly folding ran-
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long range Lévy type transitions due to folding and the
quenched random disorder caused by the heterogeneity of
monomers of the chain. Based on simple assumptions on
the hopping rate and configurational dynamics, we derive
a fractional Fokker-Planck equation (FFPE) describing
the motion of the particle along the polymer. We compute
the relaxation properties as a function of the effective
potential strength and the Lévy exponent �. We find that
the dispersion speed depends considerably on �, but
becomes universal on larger spatial scales apart from a
discontinuous change at � � 2 (i.e., for ordinary diffu-
sion). Furthermore, the relative concentration of mono-
mers and thus the particular shape of the potential does
not affect the ordinary diffusion process (� � 2), but
strongly affects all superdiffusive processes, a result we
believe to be crucial for the understanding of transport
phenomena in living cells.

Consider the scenario depicted in Fig. 1. A particle is
attached to a heteropolymer and performs a random walk
along the chain. Let x denote the chemical coordinate
with an intermonomer spacing of a. The chain is flexible
and rapidly changes its conformational state defined by
the Euclidean coordinate R�x� of each monomer. The
heterogeneity of the chain is modeled by a potential
V�x� which specifies the probability of the particle being
attached to site x. In a thermally equilibrated system this
probability is proportional to the Boltzmann factor
exp���V�x�	. The dynamics of the particle is governed
by the ratew�x jy;t� of making a transition y!x at time t.
We assume that transitions occur only between monomer
sites which are close in Euclidean space, i.e., when
jR�y; t� �R�x; t�j & a. We make the simplest possible
ansatz for this rate to take into account the requirements
of Gibbs-Boltzmann statistics, the potential heterogene-
ity of the chain and the complexity of conformational
states,

w�x j y; t� �
1

�
e���V�x��V�y�	=2��x; y; t�; (1)

where the parameter � is the typical microscopic time
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FIG. 1. Random hopping along heterogeneous polymers.
(a) A particle (black disc) moving along the chemical axis x
experiences a random potential V�x� associated with the ran-
dom sequence of different types of monomers. When the chain
is in a complex folding state, locations that are distant along
the chemical axis x may be close in Euclidean space (c),(d).
The folding topology is determined by a connectivity matrix
depicted in (b) where circular arcs indicate neighborhood in
Euclidean space. (c) A folding state with a characteristic
mesoscopic scale �. (d) A freely flexible chain with long range
connections on all scales. Arrows indicate conformational
change over time.
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��x; y; t� �
�
1 if jR�x; t� �R�y; t�j < a;
0 otherwise;

(2)

reflects the dependence of transitions on the time depen-
dent conformational state of the chain and is symmetric,
i.e., ��x; y; t� � ��y; x; t�. The function ��x; y; t� can be
interpreted as a time dependent connectivity matrix
[Fig. 1(b)]. The propagator p�x; t� of a particle initially
(t � 0) at the origin evolves according to the master
equation

@tp�x;t� �
Z
dy�w�x j y; t�p�y; t��w�y j x;t�p�x;t�	 (3)

in which the rate is given by Eq. (1). The geometrical
factor ��x; y; t� varies erratically and can be regarded as a
stochastic process evolving on a time scale �g, which is
generally different from the hopping time constant �.
Averaging (denoted by ��	) over conformational states
the dynamics reads @t�p	 � �Lp	 where the operator L
is defined by the right-hand side (rhs) of Eq. (3). If
conformational changes occur on smaller time scales
than the hopping (�g 
 �) we may substitute �Lp	 �
�L	�p	. In this approximation Eq. (1) is given by

�w�x j y; t�	 �
1

�
e���V�x��V�y�	=2��jx� yj�; (4)

where ��jx� yj� � �jR�x; t� �R�y; t�j � a	 is the proba-
bility that two given sites x and y are neighbors in
Euclidean space. If the folding process is stationary,
this probability is time independent and, due to trans-
lation invariance along the chain, it is a decreasing func-
tion of distance in chemical space. The specific functional
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form of ��x� determines the asymptotics of Eq. (3).
Consider the situation depicted in Fig. 1(c), where the
chain is knotted such that nonlocal transitions occur on a
typical scale � > a. On larger scales ��x� vanishes. In
this case, a Kramers-Moyal expansion of the rhs of Eq. (3)
yields the FPE @tp � rV 0p�D	p, in which the diffu-
sion coefficient is given byD� ��=a�2=� and the gradient
force is determined by the potential V�x� along the chain.
The situation changes drastically for the type of chain
sketched in Fig. 1(d). For a freely flexible chain the
quantity ��x� follows an inverse power law with increas-
ing chemical distance, i.e., ��x� � 1=jxj1��. Typically
�< 2 [16] and thus ��x� lacks a well-defined variance
and consequently a typical scale in long range transitions.
A particle moving along such a chain will behave super-
diffusively and perform a Lévy flight in chemical coor-
dinates. Inserting ��x� � 1=jxj1�� with 0<�< 2 into
Eq. (4) and subsequently into Eq. (3) the asymptotics is
governed by the FFPE

D�1@tp � e��V=2	�=2e�V=2p� pe�V=2	�=2e��V=2:

(5)

A detailed derivation is given in Ref. [13]. Here, D is the
generalized diffusion coefficient and the operator 	�=2 is
a generalization of the ordinary Laplacian,

�	�=2f��x� � C�
Z
dy
f�y� � f�x�

jx� yj1��
(6)

with C� � ��1��1��� sin���=2�. The boundary
case � � 2 represents the limit of ordinary diffu-
sion, i.e., Eq. (5) reduces to an ordinary FPE. When
the potential vanishes, V � 0, Eq. (5) becomes @tp �
D	�=2p and is solved by the propagator of the sym-
metric Lévy stable process of index �, i.e.,
p�x; t� � �Dt�1=�L��x=�Dt�1=�� with L��z� �
�2���1

R
dk exp�ikz� jkj�� [13].

In the following we investigate the relaxation proper-
ties of Eq. (5) in random potentials V. Since the shape of
the potential is determined by the ordering of different
types of monomers along the chain, V�x� will be bounded
and fluctuate about some average. Furthermore, it will
generally possess a typical correlation length  . Without
loss of generality we let hVi � 0 and hV2i � V2

0 . The
correlation length  is defined by  � V�2

0

R
1
0 dyC�y�

where C�y� � hV�y�V�0�i is the correlation function.
The most straightforward way to incorporate these attri-
butes into a model is by using Gaussian random phase
potentials,

V�x� �
1

2�

Z
dk!�k�e�i�kx�#�k�	; (7)

which are defined by a set of random uncorrelated
phases #�k� [with #�k� � �#��k�] and the power
spectrum S�k� �

R
dxeikxC�x� [with !�k�!?�k0� �

2�S�k�%�k� k0�]. The probability density function
(pdf) associated with this choice of V�x� is Gaussian
with zero mean and variance V2

0 � �2���1
R
dkS�k�.
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Figures 2(a) and 2(b) show two realizations of random
phase potentials, each one with a different power spec-
trum (and correlation function).

The relaxation properties are determined by the eigen-
value spectrum E�k� of the evolution operator L defined
by the rhs of Eq. (5). In order to compute the spectrum,
the FFPE can be transformed by means of p�x; t� �
e��V�x�=2 �x; t�. This yields a fractional Schrödinger
equation with identical spectral properties,

@t � �H : (8)

The operator H � D��	�=2 �U� is symmetric and the
effective potential U is related to the original potential V
by U � e)v	�=2e�)v, where v � V=V0 is a rescaled po-
tential of unit variance and ) � �V0=2 � V0=2kBT is the
potential strength in units of kBT.

For vanishing potential ) � 0, we have U � 0 and
H 0 � D	�=2 which describes free superdiffusion when
�< 2. The spectrum of H 0 is given by E0�k� � Dk�.
The wave number k > 0 defines the spatial scale of the
corresponding mode. When a potential is present, the
spectrum can be written as E�k� � D��k; )�k

� where
D��k; )� quantifies the relaxation properties on scales
’ k�1 with the unperturbed k� behavior as a reference.
If D��k; )�=D< 1 the process relaxes more slowly com-
pared to free superdiffusion. The spectrum E�k� can be
obtained for weak potentials by perturbation theory. Up
to second order in ) the quantity D��k; )� reads

D��k; )�=D � �1� 4)2G��k�	; (9)

where the effect on relaxation is determined by the
function

G��k� �
1

8�

Z
dqS�q�g��k=q� (10)

with
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FIG. 2. (a) A random phase potential with a power spectrum
S�k� � 2 ��jk� �=2 j� where � is the Heaviside function.
The correlation function C�x� � 2=� sin��x=2 �=�x= �2 de-
cays in an oscillatory fashion (inset). The potential V�x� varies
smoothly around zero. (b) A potential with exponential power
spectrum S�k� � 2 exp��2 jkj=�	 and Lorentzian correlation
function C�x� � �1� ��x=2 �2	�1. The potential V�x� shows
more structure on a finer scale. (c) Copolymers with different
relative concentrations c of monomer types (gray and black).
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g��z� �
1

z�

�
1

�1� z�� � z�
�

1

j1� zj� � z�
� 2

�
: (11)

Figures 3(a) and 3(b) depict G��k� as a function of k in
units of the inverse correlation length  �1 for the two
types of random phase potentials defined in Figs. 2(a) and
2(b). The solid line depicts the limiting case of ordinary
diffusion (� � 2). The potential slows down the ordinary
diffusion process [G��k� > 0] on scales larger than the
correlation length and speeds it up [G��k�< 0] on scales
smaller than  . The function G��k� has a pronounced
minimum at k �  �1. Moderately superdiffusive pro-
cesses (� * 1) behave in a similar fashion, exhibiting
the highest variation for k �  �1. On the other hand,
G��k� differs strongly for different � in the asymptotic
regime k
  �1. Note also that on small scales (k >  �1)
almost all processes relax faster than without the poten-
tial. In fact, G��k�< 0 for 2 � � � �c where �c � 2�
ln3= ln2 � 0:415. Surprisingly, this is no longer valid for
strongly superdiffusive processes with �<�c. For in-
stance, in the case� � 0:2 [dashed lines in Figs. 3(a) and
3(b)] G��k� is positive for k >  �1, implying that
strongly superdiffusive processes are slowed down even
on small scales. Comparing potential types, we see that
the relaxation is different for each potential, but these
differences become less important in the asymptotic re-
gime, which is governed by G��k� as k! 0. This limit
can be computed from Eqs. (10) and (11), observing thatR
1
0 dqS�q� � �, g2�z! 0� � 1, and g�<2�z! 0� � 1=4,

lim
k!0

G��k� �
�
1=4 �< 2;
1 � � 2:

(12)

Hence, the asymptotic behavior is universal, with the
exception of the limiting case of ordinary diffusion,
and is independent of properties of the potential. The
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FIG. 3. Relaxation for various Lévy exponents � (insets) and
random phase potentials. (a) [(b)] corresponds to the potential
in Fig. 2(a) [2(b)]. lg�k 	 denotes the decadic logarithm. The
gray lines indicate the limits G��k! 0� for � � 2 (upper line)
and �< 2 (lower line); see Eq. (12). (c) depicts the generalized
diffusion coefficient D��)� for the potential in Fig. 2(a) [2(b)]
and for three Lévy exponents �. The dashed and dotted lines
are the results obtained from perturbation theory, i.e., D��)� �
1� 4)2 (� � 2) and D��)� � 1� )2 (�< 2).
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FIG. 4. The generalized diffusion coefficient D��)� for the
copolymer potential at three relative monomer concentrations.
The potentials [Fig. 2(c)] either possess sparsely distributed
peaks (c � 0:05), troughs (c � 0:95), or vary uniformly (c �
0:5). Dashed (� � 2) and dotted (� � 1) lines represent per-
turbation theoretic results. (a) D��)� for a Lévy flight (� � 1)
is different for each potential. (b) D��)� for ordinary diffusion
(� � 2) is independent of c; the curves coincide.

P H Y S I C A L R E V I E W L E T T E R S week ending
25 JULY 2003VOLUME 91, NUMBER 4
range of validity of the limit (12), however, strongly
depends on �. The limit is not attained for marginal
exponents (e.g., � � 0:2 and 1.9) even on scales several
orders of magnitude larger than the correlation length
[Figs. 3(a) and 3(b)]. The above results are valid for small
potential strengths ). For higher effective potential
strengths we investigate the asymptotics numerically.
The quantity of interest is the normalized generalized
diffusion coefficient D��)� defined by

D��)� � lim
k!0

D��k; )�=D: (13)

In the perturbative regime Eqs. (9) and (13) yield the
universal relation D��)� � 1� )2 for �< 2 and D��)� �
1� 4)2 for ordinary diffusion. Figure 3(c) compares
these results to those obtained numerically. Although
the numerics deviates from perturbation theoretic predic-
tions for greater potential strengths ), the universality
still holds, i.e., the asymptotics (k! 0) is independent of
� and of the statistical properties of the potential. The
crucial property is the nonlocality of the process. Thus, as
soon as the folding properties of the chain permit scale-
free transitions (� � 2), the behavior of D��)� changes
abruptly.

The pdf of random phase potentials is symmetric with
respect to the mean, i.e., a value V is as likely to occur as
�V along the chain. For a number of heteropolymers this
assumption is inadequate. Consider the simple model
copolymer depicted in Fig. 2(c). The chain consists of a
random arrangement of monomers, each one equipped
with an intrinsic local potential parity v� and v�, with
�v� � v� > 0 and an interaction range which we
assume to be a Gaussian f�x� xn� centered at the mono-
mer site xn, i.e., V�x� �

P
vnf�x� xn� with f�x� �

exp��x2=2�2	 and � � a. The vn are randomly drawn
from a pdf p�v� � c%�v� v�� � �1� c�%�v� v��. The
relative concentration of low and high energy monomers
is given by c and 1� c, respectively. The parameter c
determines the shape of the overall potential. When c <
1=2 (c > 1=2) the potential consists of a series of local-
ized peaks (troughs). Mean and variance of the poten-
tial are hVi � �1� c�v� � cv� and h�V � hVi�2i �
�1� c�c%v2 with %v � v� � v�. Figures 4(a) and 4(b)
depict the results obtained for the generalized diffusion
coefficient D��)� on these types of copolymers for three
values of c, each one representing one of the situations
depicted in Fig. 2(c). The parameter %v was chosen such
that the variance is identical in all potentials. Although
the value of D��)� in the weak potential regime ()
 1)
is consistent with the one observed in random phase po-
tentials, for greater values of ) a striking deviation oc-
curs. On one hand, the ordinary diffusion process (� � 2)
is nearly insensitive to the shape of the potential; all func-
tions D2�)� coincide. On the other hand, the superdiffu-
sive process exhibits a more (less) pronounced decrease
with increasing ) when c � 0:95 (c � 0:05) as compared
to an unbiased concentration of monomer types.
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The results reported in this Letter predict for super-
diffusive behavior on folding polymers that the disper-
sion speed depends strongly on the specific arrangement
of various types of monomers. This is in sharp contrast to
the case of ordinary diffusion, which solely depends on
magnitude variations of the potential. Therefore we ex-
pect that potential heterogeneity is an essential ingredient
in superdiffusive translocation phenomena of proteins
along biopolymers.
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