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Abstract—Understanding human mobility is crucial for mod-
eling the spatial spread of human infectious diseases. The quanti-
tative description of spatial epidemics is based on two prominent
theoretical approaches, diffusive dispersal and direct coupling
or effective force of infection. The first ansatz assumes random-
walk movement of the host between different locations whereas
the second employs an effective force of infection between
distinct populations. Both models are inconsistent with important
aspects of human mobility, most importantly the bidirectional
movements between individuals’ homes and distant location. We
introduce and investigate a novel epidemiological model that
explicitely takes into account this bidirectional nature of human
movements. In various topologies (networks and lattices) we find
significant differences as well as similarities among all three
models, depending on the parameters. On a lattice we obtain an
analytical expression for the velocity of the propagating epidemic
front. In contrast to the diffusion approach, our model predicts
a saturation of the velocity with increasing traveling rate. Our
analysis is supported by numerical simulations on both lattices
and networks and provides a framework for incorporating the
abundance of pervasive data on individual human mobility into
disease dynamics modeling.

I. INTRODUCTION

Infectious diseases remain a pressing challenge for
mankind [1]. Investigations on epidemics in human and animal
populations require accurate assessments of their spatiotempo-
ral dynamics [2] as infectious diseases spread among different
locations due to movements of their host. It is frequently
assumed that hosts move chaotically or perform random walks
(Fig.1(a)) in space and therefore host mobility has been
described within reaction-diffusion dynamics [3, 4, 5, 6, 7].
However, humans spend most of their time in particular
places (at home, work, etc.) to which they always return,
rarely performing long trips and multi legged trips among
distant places[8, 9]. To account for this, heuristic models were
introduced in which an effective force of infection between
spatially separated populations was introduced to mimic the
effect of underlying mobility implicitely (Fig.1(b)). Typically,
the force of infection exerted by one population onto a
distant one is assumed to be proportional to prevalence of the
disease in the distant location [10]. However this approach
lacks explicit incorporation of host movements as well as

a systematic derivation and analysis of the applicability of
this approach. In particular, it remains unclear how coupling
depends on the individual movement rates.

Here we propose a method for incorporating bidirectional
mobility as random movements on overlapping individual
topologies. In particular we consider star-shaped network
topologies corresponding to commuting movements of individ-
uals between their home location (center node) and accessible
destinations (distant nodes) and investigate properties of the
resulting epidemics on regular lattices and random networks.
Invididuals moving on these star-shaped networks are required
to return to their home location from a visit to a distant
location before they visit another distant location. We find
that in this model movements at low travel rates yield similar
results as reaction-diffusion models. In contrast, when travel
rates are high, our model corresponds to the effective force of
infection approach. For lattice topologies we treat our model
analytically and obtain an expression for the velocity of the
epidemic wave front. Contrary to the widely accepted reaction-
diffusion model leading to the unbounded increase of the front
velocity with increasing travel rate, in our model the velocity
has an upper bound.

II. THE MODEL

Consider M locations that are connected in some way
and accessible to one another. Each location is populated by
Nn individuals living there permanently. At every moment
an individual belonging to the n-th location can travel to
some other location m. Generally, at a given point in time
and in every location n individuals from other location m
reside (Fig.1(d)). Without loss of generality we choose an SIS
epidemiological model (generalization towards other models
like SIR, SIRS, SEIR are straightforward) [1], in which
susceptible and infected individuals interact in each node.
We denote by Im

n and by Sm
n the number of infecteds and

susceptibles, respectively, belonging to the n-th location but
currently located in the m-th location. In a given location
infecteds and susceptibles originating in every other location
may interact. Additionally, individuals belonging to n travel,
they can leave location m and travel to some other location k
with a rate ωn

km. Travel dynamics and infection events can be
described by the following set of reactions

In
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Figure 1. Mobility in spatial epidemics models. (a) Reaction-diffusion:
unbounded random movements; (b) effective force of infection between
populations (c) explicit incorporation of bidirectional host movements. Color
code symbolizes bidirectional links due to hosts from different nodes. Panel
(d) illustrates theoretical model for bidirectional movements.

where X is a place holder for I and S. α and β denote
infection and recovery rates respectively. The corresponding
set of mean-field equations for infecteds read (analogously for
susceptibles)

d

dt
Im
n =

α

Nm
Sm

n

∑

k

Im
k − βIm

n +
∑

k

(
ωn

mkIk
n − ωn

kmIm
n

)
,

(1)
where m = 1, ...,M and Nm =

∑
k (Im

k + Sm
k ) is the number

of individuals in the m-th location. In the case of all-to-all
coupling we have 2M2 equations (1). One can reduce this
number to 2M2 − M taking into account conservation of the
population of the location n:

∑
m (Im

n + Sm
n ) = const. The

number of equations reduces further if locations are not all-to-
all coupled. Note that the global endemic state or stationary
solution I$

total/Ntotal = 1− β/α is identical to a single well-
mixed population. The travel rates {ωn

km} quantify the travel
behavior of individuals belonging to population n. We can
think of them as overlapping weighted directed subgraphs. If
{ωn

km} are n-independent, we recover the reaction-diffusion
case. In the following we consider the case of overlapping star-
shaped networks corresponding to commuting between home
and destination locations with ωn

km = ωn
nmδkn + ωn

knδmn.
We assume that in equilibrium detailed balance is fulfilled

and thus with Nm$
n = (Im

n + Sm
n )$ we have Nn$

n /Nm$
n =

ωn
nm/ωn

mn. Thus the rates ωn
mn and ωn

nm can be defined
operationally as fractions of individuals remaining in their
home location and those that are traveling. The stationary
population size of n is then given by:

Nn$ =
Nn

1 + εn
+

∑

m!=n

ωn
mn

ωn
nm

AmnNm

1 + εm
, (2)

where εn =
∑

k Aknωn
kn/ωn

nk =
∑

k AknNk$
n /Nn$

n is the
fraction of the population belonging to n that are located out-
side of n and Akn denotes an adjacency matrix. Its elements
are 1 if travelling is possible between k and n and 0 otherwise.

If commuting is very frequent as compared with the infec-
tion rate ωn

mn ∼ ωn
nm $ α,β, detailed balance is fulfilled

for infecteds and susceptibles separately and the last term in
Eq. (1) vanishes. Realistically we have εn % 1 which means
individuals belonging to n remain there for most of the time.
For the number of infecteds from location n we can then
reduce to an effective force of infection model:

d

dt
In = αSn

∑

k

εnkIk − βIn,

where the coupling strengths εnk =
∑

m pm
n pm

k /Nm$ are
explicitly related to travel rates and pm

n = Nm$
n /Nn is an

occupation probability. Hence direct coupling represents a
special case of our general model.

III. DYNAMICS ON LATTICES

First we consider a homogeneous one-dimensional lattice
of locations of size N separated by a distance d. Furthermore
we assume next-neighbor coupling and that only infecteds
can travel (this assumption can be relaxed and yields similar
results). For simplicity we further assume β = 0, i.e. no
recovery from the disease. We denote the number of infecteds
being at home by In

n and the number of infecteds being in the
neighborhoods (n−1) and (n+1) by I−n or I+

n , respectively.
This yields

In
n + Sn

α→ 2In
n

I±n∓1 + Sn
α→ I±n∓1 + Ih

n

In
n

ω1
"
ω2

I±n

where Sn denotes the number of susceptibles in n. In the corre-
sponding mean-field equations we can approximate Sn, I±n by
their continuous counterparts and perform a Taylor expansion:
I±n±1 → I±(x±d) ≈ I±±d∇I±+ d2

2 ∆I±. In a homogeneous
chain the size of one location remains constant during an
epidemic and equals N . Change of variables un = In/N ,
vn = (I+

n + I−n )/N and wn = (I+
n − I−n )/N leads to the

following mean-field equations for the densities of infecteds

∂tu = α(1 − u − v)(u + v + D∆v + d∇w) + ω2v − 2ω1u

∂tv = 2ω1u − ω2v (3)
∂tw = −ω2w,

where D = d2/2 and where we used the condition N =
Sn+I+

n +I−n = const. The third equation has the solution w ∼
e−ω2t and for t $ ω−1

2 we have w ≈ 0 and can thus discard w
leaving only first two equations (3). Steady states are u$ = 0,
v$ = 0 and u$ = ω2/(2ω1 + ω2), v$ = 2ω1/(2ω1 + ω2). In
the second steady state the density of infecteds in one city is
u + v = 1, i.e. remains the same as in an isolated population.
The system of equations (3) exhibits traveling wave solution
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Figure 2. The front velocity c as a function of rate ω. The dashed line
corresponds to hosts performing random walks as given by eq.(6). The solid
line corresponds to hosts performing bidirectional movements as given by (5).
Symbols represent results of numerical simulations. Number of agents per site
is N = 104. The inset represents a scaling of the velocity deviation δc from
the analytical prediction (5) with N .

the front velocity of which are given by

c =
2αω1

√
D

(
2 + ω2

ω1

)

α + ω2 + 2ω1
. (4)

If the forward and backward rates are significantly different
from each other, two extreme cases can be considered. If
the forward rate ω1 is small, i.e. Eq. (4) holds, there is no
disease spread. If the backward rate ω2 is small, the system
is determined by forward rate ω1.

For equal forward and backward rates (ω1 = ω2), the
velocity is given by

c =
2
√

6Dαω

α + 3ω
. (5)

The dependence of the velocity on α and travel rate ω as well
as results of stochastic numerical simulations is depicted in
Fig. 2. For comparison, the front velocity dependence of the
reaction-diffusion scenario is also depicted. The velocity is in
this case reads [3, 4]

c = 2
√

Dωα, (6)

and we see that it does not saturate with increasing travel rate.
Surprisingly, we observe this saturation in the bidirectional
model. This is due to the fact that for large times only the
probability to meet an infected person impacts on the spread
of the infection. From (5) it follows that the asymptotic values
of the velocity is proportional to the reaction rate limω→∞ c =
2
√

6D
3 α. Fig. 2 shows a slight deviation of numerical results

from the mean-field analytical prediction (5). This is due to
fluctuations of the stochastic system that are consistent with
inverse square logarithmic scaling of the velocity deviation δc
as a function of the number of particles N (Inset in Fig. 2).,
a scaling that is known to be typical for this type of reaction-
diffusion system [11].
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Figure 3. Mean peak time µ(ω−) of the epidemics on a random network
defined as µ =

´
dtItot(t)t/

´
dt for random walk (blue lines) and bidirec-

tional (red lines) travel patterns as a function of the backward travel rate ω−

for different commuter ratios: ε = 1; 0.1; 0.01 and 0.001. Maximal possible
number of agents per site N = 1000. The network is a connected component
of an Erdős-Rényi network with 400 nodes and average degree 〈k〉 = 2.

IV. NETWORK TOPOLOGY

A one-dimensional lattice constitutes the simplest possible
case. In order to investigate the impact of complex network
topologies we analyzed a random Erdős-Rényi network of
coupled populations in which nodes are populated randomly
according to a uniform distribution. We fixed the backward
travel rate ω− = const and chose forward travel rates as
ωmn = ω+AmnNm/

∑
k AknNk reflecting the distribution of

individuals over the neighborhood according to the size of
neighbor locations. Here ω+ denotes an additional parameter
measuring the forward travel rate ω+ = εω−. In order
to compare our model with a reaction diffusion model, we
chose inter-location flows of individuals to be equal in both
models. Fig.3 illustrates the mean peak time of the epidemic
µ =

´
dtItot(t)t/

´
dt obtained from numerical solutions of

corresponding mean-field equations of an SIR model as a
function of the backward travel rate and for different values
of commuter ratio ε. At lower backward travel rates and at
low commuter ratios the difference between epidemics in both
models is small. The models’ predictions deviate for high
travel rates and for small commuter ratios. This result is in
agreement with our predictions for a regular lattices. At small
travel rates and small commuter ratio, travel events occur
rarely compared to the outbreak time of an epidemic and it
does not matter if a traveling individual returns home or not.
At high travel rates, however, it is very probable that a random
walker carries a disease further then just to neighboring nodes.

In a more realistic context we constructed a weighted
network between counties in Germany according to a gravity
model and compared a spatial SIR model based on bidirec-
tional movments to a reaction-diffusion model. Results are
shown in Fig. 4. An epidemic driven by bidirectional mobility
is significantly attenuated in comparison to the epidemic driven
by random walk travel pattern.

V. CONCLUSION

We introduced and analyzed an epidemic model that explic-
itly accounts for bidirectional host movements. In the limit
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Figure 4. Evolution of an epidemic (SIR model) in a realistic context
(Germany) driven by random walk (red line) and bidirectional movements
(blue line) of the hosts. Upper panel: total number of infecteds as a function
of time. Bottom panels: snapshots of maps of infecteds at t = 27; 35 and 49.
One observes a clear difference between epidemics due to different movements
patterns. Parameters: α = 1, β = 0.1, ω− = 10, ε = 0.001.

of low travel rates both reaction-diffusion and bidirectional
models behave similarly. An epidemic due to bidirectional
movements on a regular lattice exhibits structurally different
behavior as compared to widely accepted reaction-diffusion
models. We showed that the epidemic wave front velocity
saturates with increasing travel rate, an effect not observed
in ordinary random walk models. As more data on human
mobility becomes available we believe that our model presents
a useful theoretical framework for incorporating this data
as a first step in the development of mobility driven more
quantitative models for spatial disease dynamics.

We kindly acknowledge B. Schwenker, R. Brune and V.
David for sharing software for stochastic numerical simula-
tions and fruitful discussions.
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