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Abstract. Using a distortion measure for the states emerging in self-organizing maps (SOMs)
we mathematically analyse a recently proposed high-dimensional map formation model for ocular
dominance patterns. We calculate critical values of parameters for ocular dominance states to
occur, and we determine how the pattern layout depends on these parameters. The analysis
reveals an increase of ocular dominance bandwidth with decreasing correlation, consistent
with a recently observed increase of bandwidth in strabismic cats. In subsequent simulations
these analytical results are corroborated, irrespective of the specific normalization procedure
(multiplicative or subtractive) employed in the simulations.

1. Introduction

The activity-driven self-organization of neural maps has been described by numerous map
formation models. A non-exhaustive list includes: the models of von der Malsburg (1973),
Willshaw and von der Malsburg (1976) and Swindale (1980); the correlation-based models
of Miller et al (1989) and Miller (1994); the elastic net models of Durbin and Mitchison
(1990) and Goodhill and Willshaw (1990); Tanaka’s model (Tanaka 1990); and models based
on Kohonen’s self-organizing map (SOM) algorithm (Obermayeret al 1990, 1992, Goodhill
1993, Bauer 1995). For recent reviews, see Erwinet al (1995) and Swindale (1996). In these
models different types of neural map formation, like the development of ocular dominance
columns or the development of orientation columns, can be investigated by changing the
projection geometry and parametrization, while keeping the general mathematical framework
intact.

Using numerical simulations, one can demonstrate that a model can bring about a specific
map formation phenomenon at a specific set of parameters. Other types of questions (such
as how patterns depend on parameters, or whether a particular behaviour of a model can
be ruled out) require systematic variations of parameters, which are numerically costly and
cumbersome at best, and infeasible at worst. Here, a mathematical analysis of the pattern
formation behaviour is advantageous. It allows us to separate important from unimportant
parameters and to calculate regimes in parameter space where a particular type of pattern (a
state) of the map can be expected to result from the map formation process. nevertheless,
a mathematical analysis is often difficult due to the nonlinearities inherent to many map
formation models.

§ E-mail: bauer@chaos.uni-frankfurt.de
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18 H-U Bauer et al

Recently, a new analysis technique has been introduced for the high-dimensional version
of the SOM algorithm (Baueret al 1996, Riesenhuberet al 1997a). It is based on a
comparison of energy values for different final map states. While generally it is difficult
to assume a final map state in terms of receptive field profiles, the new method takes
advantage of the highly nonlinear winner-take-all rule of the SOM and characterizes map
states in terms of the ways stimuli are projected to the map. Since this method does not
exploit linear instabilities occuring in the map formation dynamics, but focuses on the final
map state, it includes the effects of pattern rearrangement during the nonlinear phase of the
formation dynamics.

In the present paper we use this technique to analyse an SOM-based model for the
development of monocular receptive fields and the ocular dominance map layout. The
model is very close to the model introduced and numerically investigated by Goodhill
(1993). It deviates from Goodhill’s formulation in the choice of stimuli and a technical
aspect of the normalization employed in the learning rule (multiplicative versus subtractive
normalization, see section 4.3). After a brief sketch of the ocular dominance model and of
general aspects of the analysis technique in the second and third section, we describe the
actual mathematical analysis and its results in the fourth section. The assumptions made to
obtain sensible final states of the map are also detailed in the fourth section. In the fifth
section we describe results of simulations, which not only corroborate our analytical results,
but which allow us to compare the impact of multiplicative versus subtractive normalization
in this model. A brief discussion concludes the paper.

2. SOM model for the development of ocular dominance bands

2.1. The SOM rule

A self-organizing map (Kohonen 1982) is a projection rule for stimuliv in an input spaceV
to neuronsr in an output spaceC, together with a dynamics rule specifying the learning of
this projection. The SOM is formally described by receptive field vectorswr ∈ V belonging
to the nodesr. The projection rule holds that a stimulus is mapped to that map neurons
the receptive field vector of which has the largest overlap withv,

v 7→ s : ws · v = max
r

(wr · v).

By this strongly nonlinear mapping rule, the stimulus spaceV is tesselated in disjunct
regions

�r = {v ∈ V | wr · v > wr′ · v ∀ r′ 6= r}.
�r is called a Voronoi polygon or tesselation region. It contains all stimuliv ∈ �r that are
mapped to neuronr.

In the SOM, the receptive field vectorswr are adapted by successive application of
stimuli randomly chosen from a probability distributionP(v). The receptive field vectors
are incremented as follows:

1wr = ε h(r − s)(v − wr) (1)

with

h(r − s) = exp

(
− (r − s)2

2σ 2

)
. (2)

The Gaussianh(r−s) occuring in equation (2) is a function of the distance between cortical
response unitr and the winning units. It is assumed to capture the consequences of the
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Analysis of ocular dominance pattern formation 19

lateral cortical interactions (for a discussion of the physiological interpretation of the SOM
rule, see Kohonen (1995)). The width parameterσ of the Gaussian is a central parameter
of the SOM, governing the occurence or non-occurrence of patterns in the map. The scalar
ε controls the magnitude of increments. For a more detailed description of the SOM rule,
and its applications in biological modelling and technical signal processing, the reader is
refered to Kohonen (1995) and Ritteret al (1992).

2.2. Architecture of the ocular dominance model

Similarly to the model of Goodhill (1993), two retinal input layers map onto a cortical
response layer, see figure 1. Each layer, retinal as well as cortical, consists ofN ×N nodes.
Nodes in the cortical layer are two-dimensional discrete vectors denoted byr = (r1, r2)

t,
whereas nodes in the retinal input layers are denoted byx = (x1, x2)

t. Deviating from
Goodhill’s model, we here choose a stimulus to consist of Gaussian activity distributions
in both input layers, with relative height 1 in one retina, and heightc ∈ [0, 1] in the other
retina. The parameterc controls the degree of correlation between left eye and right eye
inputs. Both Gaussians have their centre atx0 and have a widthσs. Formally, a stimulus
has two componentsv = (vl, vr)t, the first component describing the activity distribution
in the left, the second in the right input layer. Thus, a right eye (left eye) bias stimulus is
(including a normalizing constantα) given by

right eye bias: vx0,l(x) = α exp

(
− (x − x0)

2

2σ 2
s

)
· (1, c)t

left eye bias: vx0,r(x) = α exp

(
− (x − x0)

2

2σ 2
s

)
· (c, 1)t.

Dominance of the left eye or the right eye input are chosen at random, as well as the centre
positionsx0.

Cortical Layer

Left Retinal Layer Right Retinal Layer

Figure 1. The model architecture. Two retinal input layers are mapped onto a single cortical
output layer. Each output unitr receives inputs from each input unit of both layers by synaptic
weightswr . The stimuli are Gaussian activity distributions peaked at the same location in both
input layers, one of them attenuated by a factorc.
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20 H-U Bauer et al

Since each of the two input layers has as many channels (with locationsx0) as there are
cortical nodes,v andwr are characterized by 2N2 values. The stimuli are normalized such
that they represent an activity distribution, i.e. such that the sum over these 2N2 values has∑

x

vl(x) + vr(x) = 1. (3)

The normalization (3) of the stimuli is automatically imposed also on the receptive field
vectorswr by the learning rule (1), see Ritteret al (1992).

3. Mathematical criteria for the emergence of ocular dominance patterns

3.1. Distortion measure for SOMs

A mathematical analysis of SOMs can be based on a consideration of energy functions, and
the lowest energy state. Even though it is known that no exact energy function of the SOM
exists (Erwinet al 1992), the approximative energy function

Ew =
∑
r,r′

∑
v∈�r

h(r − r′) (v − wr)
2 (4)

could be considered instead (see Kohonen (1995) for a general discussion of energy
functions in SOMs, and Mitchison (1995) for a comparison of different approximative
energy functions). In the sum over allr, r′, the contributions withr = r′ correspond
to the mean square error of a regular vector quantizer. The further contributions with
r 6= r′ include the effect of topography in the map and punish large distances between
receptive fields of closeby neurons. However, the usefulness ofEw for an analysis of
high-dimensional SOMs is severely restricted by the necessity to know (or make an ansatz
for) the receptive field vectorswr. For high-dimensional SOMs there is no way known to
obtain thewr apart from actually simulating the map.

Recently, a further approximation to equation (4) has been proposed (Baueret al 1996),
leading to a ‘distortion measure’

Ev =
∑
r,r′

∑
v∈�r,v′∈�r′

h(r − r′) (v − v′)2. (5)

Expressing the receptive field shapeswr as a suitable superposition of stimuli, expanding
equations (4 and (5) and comparing terms shows thatEv is related toEw predominantly by a
multiplicative factor (balancing the additional sum in (5), for a more detailed discussion see
Riesenhuberet al (1997a)). So we can assume thatEv attains a minimum at approximately
the same value ofwr which minimizesEw.

The main advantage ofEv overEw lies in the fact that for an evaluation only knowledge
of (or an ansatz for) the stimulus space tesselations�r is necessary. In a discrete stimulus
ensemble an ansatz for the�r is much simpler to make than for the receptive field vectors
wr. The distortion measure method has already been applied to analyse SOM models for
the development of orientation maps (Riesenhuberet al 1997a, b).

3.2. Stimulus overlaps in the ocular dominance model

For the stimuli described in the previous section the overlapv · v′ is simpler to calculate
than the squared difference(v − v′)2, we will therefore consider the measure

E = −
∑
r,r′

h(1r) w(r, r′) (6)
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Analysis of ocular dominance pattern formation 21

where

w(r, r′) =
∑

v∈�r,v′∈�r′

v · v′. (7)

Here 1r = r − r′ denotes the difference in cortical coordinates. The distortion measure
in equation (6) equalsEv up to a constant. The factorw(r, r′) may be interpreted as the
interaction energy of the tesselation regions�r and�r′ .

In order to evaluatew(r, r′) we have to calculate overlapsv · v′, i.e. between stimuli
with centres atx0 andx′

0. This involves the terms

δll (x0, x
′
0) = vx0,l · vx′

0,l δrr(x0, x
′
0) = vx0,r · vx′

0,r

δlr(x0, x
′
0) = vx0,l · vx′

0,r δrl(x0, x
′
0) = vx0,r · vx′

0,l
(8)

wherevx′
0,l denotes the component of the stimulus vectorv at retinal positionx0 in the

left eye, andvx′
0,r denotes that in the right eye. Due to symmetry properties of the system

the overlaps in (8) can be expressed in terms of a single functionδ(1x0), which explicitly
depends on the distance between stimuli peaks,1x0 = x′

0 − x0:

δll (x0, x
′
0) = δrr(x0, x

′
0) = δ(1x0)

δlr(x0, x
′
0) = δrl(x0, x

′
0) = 2c

1 + c2
δ(1x0)

where

δ(1x0) = (1 + c2)

√
πσ 2

s exp

(
−1x2

0

4σ 2
s

)
. (9)

3.3. Stimulus space tesselations in the ocular dominance model

As the next step in our analysis, we have to make an ansatz for potentially stationary
tesselations{�r}r∈C , i.e. for ways the stimuli are distributed among the cortical units. This
ansatz is the central part of the analysis, and will be explained in a rather detailed fashion.

To simplify the analysis, we assume in the following that stimuli can only be centred at
the locations of the retinal channels. This leaves us with twice as many stimuli as cortical
units. Two sensible further assumptions about the tesselation are:

• Due to symmetry each�r contains an equal number of stimuli, i.e. two stimuli.
• Each�r is connected, e.g. the stimuli it contains are neighbours in stimulus parameter

space.

These two assumptions allow only three types of tesselation regions in the stimulus
parameter space which are depicted in figure 2. In this figure stimulus parameter space is
represented as a three-dimensional box, consisting of the discrete two-dimensional retinal
coordinates of the stimuli and their ocular bias (L and R denoting whether the larger peak
occurs in the left or right retina). The Voronoi polygons{�r}r∈C are subsets of the stimulus
parameter space and tesselate it. TypeA is a tesselation region�r which consists of a left
eye and a right eye stimulus centred at the same retinal positionx0. The corresponding
cortical cell atr is binocular, responding to stimuli in the left and right eye equally well. The
simplest tesselation of the entire stimulus parameter space employing this type of Voronoi
polygon is shown in the top part of figure 2.

Type B andC Voronoi polygons also respect the assumptions on�r previously made.
Here, two complementary Voronoi polygons consist of two stimuli which are centred
at neighbouring retinal locations. When both stimuli in�r are of the same ocularity,
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Figure 2. The assumptions of two neighbouring stimuli per Voronoi polygon allow only three
types of stimulus space tesselations�r . Top: TypeA, stimuli of different ocularity, but centered
at the same retinal location in one�r . Center: TypeB, stimuli of the same ocularity but centered
at neighbouring retinal location in one�r . Bottom: Type C, stimuli of different ocularity at
neighbouring retinal locations in one�r . L and R denote the ocular bias of the stimuli (i.e. a
larger peak in the left or right retina).
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Analysis of ocular dominance pattern formation 23

monocularly responding cortical neurons result (typeB). When they are of opposite
ocularity, binocular neurons with displaced receptive field centres for the two eyes result
(type C). Possible typeB and C tesselations of stimulus parameter space is shown in the
middle and bottom of figure 2, respectively.

These three types of�r correspond to different receptive field properties of individual
neurons. Note that in figure 2 we have not yet equipped the set of Voronoi polygons
{�r}r∈C with neighbourhood properties resulting from the topography of the set of cortical
units r ∈ C. To make the tesselation ansatz complete, by assigning a specific�r to each
cortical neuron, we also have to make assumptions about different map layouts, i.e. about
the way the�r differ for neighbouring neurons. Here, we distinguish four different kinds
of map layouts:

• Binocular state with typeA tesselation.
• Ocular dominance bands of widthb, typeB tesselation.
• Ocular dominance of infinite bandwidth, typeB tesselation.
• Binocular state with typeC tesselation.

These map layouts will be dealt with separately in the following subsections. Other kinds
of layouts were tested for the sake of completeness, but none turned out to be of interest
(e.g. none leads to a lowest energy state).

3.3.1. Binocular state with typeA tesselation. In the rather trivial state of the map which
exhibits no ocular dominance each neuron has a tesselation region of typeA, and the
�r of neighbouring neurons in the cortex contain stimuli neighbouring in retinal space
(figure 3, top). The connected beads in the figure represent the topography of the cortical
response unit. These are superimposed on the Voronoi polygons in stimulus parameter
space they belong to. For clarity, only one retinal coordinate (x) is displayed in the figure.
The topography along the other retinal coordinate (y) is retinotopic in all cases; that is,
neighbouring Voronoi polygons in stimulus parameter space belong to neighbouring cortical
response units.

In order to finally evaluateE for this or any other tesselation, we must specify the
factor w(r, r′) occuring in equation (6). Whilew(r, r′) explicitly depends on the cortical
neuronsr, r′, it depends via the map layout ansatz on the retinal distance1x = x′ − x
between the centresx′ andx of the tesselation region�r and�r′ ,

w(r, r′) = w( 1x(r, r′) ).

For the present tesselation with regions of typeA we have

w(1x) = 2
(1 + c)2

1 + c2
δ(1x)

whereδ(1x) is taken from (9). Since the present tesselation is retinotopic, we further have

1x = 1r

w(1x( r, r′ )) = w( 1x(1r) ) = w( 1r )

yielding the final expression for the distortion measure

E0 = −2
(1 + c)2

1 + c2

∑
r,r′

h(1r) δ(1r). (10)
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Figure 3. Different possible map layouts for ocular dominance maps (only one retinal coordinate
(x) is shown; the maps are organized retinotopically along the other retinal coordinate (y)).
Top: Type A tesselation regions are retinotopically distributed among map neurons, resulting
in a binocular state.Second from top:Type B tesselation regions are distributed among map
neurons such that bands of widthb result, in this caseb = 2. Second from bottom:Type B
tesselation regions with infinite bandwidth.Bottom: Type C tesselation regions are distributed
retinotopically, resulting in a binocular map state.
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Analysis of ocular dominance pattern formation 25

3.3.2. Ocular dominance bands of widthb, typeB tesselation. Next we consider a map
layout with ocular dominance bands of widthb. Here, the Voronoi cells have a spatial
extension. Without loss of generality we assume this extension to be in thex-direction (see
figure 2). The neighbourhood relations between the neurons corresponding to these cells is
such that along thex-directionb left-eye neurons alternate withb right-eye neurons, then
anotherb left-eye neurons, etc (figure 3). In they-direction, ocularity does not change. So
the ‘folding’ of ocularity can be said to run parallel to the extension of the Voronoi cells. We
also investigated the orthogonal case (Voroni cells extended inx-direction, alternating bands
in y-direction). This, however, always leads to a higher value of the distortion measure and
will not be considered any further.

So in the presently discussed state the symmetry between both coordinates of the layers
is broken, and we have to treat the dependence on each coordinate separately in the functions
of concern:

r = (r1, r2)
t x = (x1, x2)

t

h(r) = h(r1, r2) δ(x) = δ(x1, x2).

Since we have left eye bias and right eye bias tesselation regions here, there are different
types of interactions between them, namelywll , wrr, wlr , and wrl . Due to the symmetry
properties of the stimuli, the interaction terms can all be expressed in terms of a single
function D(x1, x2):

wll (x1, x2) = wrr(x1, x2) = D(x1, x2)

wlr(x1, x2) = wrl(x1, x2) = 2c

1 + c2
D(x1, x2)

D(x1, x2) = 2δ(x1, x2) + δ(x1 + 1, x2) + δ(x1 − 1, x2).

(11)

To evaluateE it is more convenient to rewrite equation (6) as a sum of interaction terms
δss ′ between stripes, wheres, s ′ = 0, ±1, ±2, . . ., denotes the index of a stripe,

Eb = −
∑
s,s ′

0(1s) δss ′

0(1s) =


1 if 1s even

2c

1 + c2
if 1s odd

δss ′ =
∑
r2,r

′
2

b−1∑
i,i ′=0

h(b1s + 1i, 1r2) D(1x1, 1x2).

(12)

1s = s−s ′ denotes the difference in stripe indices. The factor0(1s) takes into account the
difference in interactions between stripes of equal ocularity and interactions of stripes with
opposite ocularity. In each termδss ′ the interactions between the receptive fields contained
in the stripess ands ′ are traced (i and i ′ are the internal coordinates of tesselation regions
in s ands ′ respectively,1i = i ′ − i; note thatr2 runs along the bands,r1 runs perpendicular
to the bands).

The retinal distances in the system are now

1x1 = b1s + 21i 1x2 = 1r2.

The latter expressions inserted into equation (12) yield the final result for the distortion
measure in ocular dominance solutions:

Eb = −
∑
r2,r

′
2

∑
s,s ′

b−1∑
i,i ′=0

0(1s) h(b1s + 1i, 1r2) D(b1s + 21i, 1r2). (13)
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3.3.3. Ocular dominance of infinite bandwidth, typeB tesselation. Figure 3 depicts an
infinite bandwidth solution, with typeB tesselation regions arranged such that neighbouring
neurons have identical ocularity. The interaction term between different receptive fields is
D(x1, x2) as given in equation (11). However, there is a difference in the retinal distances

1x1 = 21r1 and 1x2 = 1r2

which yields the final result

E∞ = −
∑
r1,r

′
1

∑
r2,r

′
2

h(1r1, 1r2)D(21r1, 1r2). (14)

3.3.4. Binocular state with typeC tesselation. Finally we consider the tesselation with
binocular cells, but on the basis of typeC tesselation regions (figure 3 (bottom)). This state
is retinotopic, as the binocular state discussed above. The difference lies in the structure
of the tesselation regions which are now of typeC instead of typeA. For this state we
can obtain an expression for the distortion measureEc in a similar manner as in the above
cases:

Ec = −
∑
r1,r

′
1

∑
r2,r

′
2

h(1r1, 1r2) w(1r1, 1r2)

w(r1, r2) = 2δ(r1, r2) + 2c

1 + c2
( δ(r1 + 1, r2) + δ(r1 − 1, r2) ).

(15)

Comparing this distortion energy to that of the binocular state with typeA tesselation, one
can show thatEc > E0 for all values of the relevant parameters. A state with typeC
tesselations therefore is never attained, and we can disregard this state in the following.

3.4. Analytical phase diagrams

In the final step of the analysis we now determine the lowest energy state for a particular
combination of parameters. This is done by numerically performing the summation in
equations (10), (13), (14) and (15). By varying the control parameters of the system, the
width σ of the SOM lateral interaction function and the stimulus correlation parameterc,
we can obtain phase diagrams of the system which indicate the parameter regimes for each
of the states.

Two such phase diagrams, for a widthσs = 2.0 andσs = 4.0 of the stimuli, are shown
in figure 4. Among the possible ocular dominance states, we considered states with a
bandwidth fromb = 1 up to b = 6 (note that a bandwidth ofb = 1 corresponds to a
wavelength ofλ = 2 of the pattern), and the state with infinite bandwidth. Solid phase
transition lines separate regions in which different states prevail. The dotted phase transition
lines indicate the structure of the phase diagram when the state with infinite bandwidth is
not considered in the computation.

Consider the phase diagram on the left of the figure (σs = 2.0). Above a value of
c ≈ 0.6, binocularity occurs, depicted by the grey square. Below a critical value ofc,
which decreases slightly with increasingσ , ocular dominance states occur. Among these,
states with lower width occur at larger values ofc. This dependence of the bandwidth
on the correlation parameter is particularly apparent, if the infinite bandwidth state is not
considered. However, even if this state is included in the comparison, a parameter regime
exists in which this unphysiological state does not occur (see the discussion in section 5).

The differences in distortion between the binocular state and the various ocular
dominance states are substantial compared with the changes ofE as a function ofc. So,
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Figure 4. Two phase diagrams for an SOM model for the development of ocular dominance
maps for stimulus widths (a) σs = 2 and (b) σs = 4). Parametersc andσ denote the amount of
correlation between eyes, and the width of the map neighbourhood function, respectively. If the
infinite bandwidth state is taken into account, only four different states occur (binocular stateA,
monocular states with bandwidthsb = 1, b = 2, andb = ∞. These states are indicated by the
square-shaped icons, and are separated by the solid lines. If the infinite bandwidth state is not
taken into account account, monocular states with an increasing bandwidth occur in the phase
diagram (indicated by the rectangular icons, separated by the dotted lines).
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the results for the criticalc for the transition from binocularity to ocular dominance can be
regarded as an analytical prediction of an explicit state transition from one state to another.
In contrast, the differences between theE values for the different ocular dominance states are
rather small. Considering the rather crude assumptions made with respect to the map layout,
one should neither expect the assumed states nor transitions between them to materialize
explicitly in a simulation. Instead, one should interpret the phase diagram within the ocular
dominance regime as showing a broadening of ocular dominance bands with decreasing
between-eye correlationc. Such an effect has recently been observed in an experiment in
the cat (L̈owel 1994); it may turn out to be crucial in comparison of explanatory power of
different map formation models (see the discussion in section 5).

The comparatively small distortion differences between the ocular dominance states also
mean that as far as the main transition from binocularity to ocular dominance is concerned,
the assumptions made for the ocular dominance map layout are not crucial.

The results depicted in figure 4 were generated for a stimulus widthσs = 2.0 and
σs = 4.0. Note that the qualitative features of the phase diagrams remain the same; the
overall structure of the phase diagrams is not altered by variations of the stimulus width
(we also checkedσs = 0.5, 1).

4. Numerical results

4.1. Comparison of analytical and numerical energy values

In order to complement our analytical results by numerical evidence, we performed several
simulations of ocular dominance formation in this model. In a first series of simulations we
specifically adressed the question, to what extent numerically and/or analytically determined
values forEw and Ev coincide. We simulated maps at various values of the correlation
parameterc using the reduced stimulus set employed in the mathematical analysis (stimuli
with central peak in either eye, centred at each retinal channel, respectively). We then
computed the average degree of ocularity

O = 〈‖wr, left eye− wr, right eye‖〉r.
This measure (shown as a solid line in figure 5 (left)) indicates a state transition atc = 0.66.
We further determined numerical values ofEw andEv by evaluating equations (4) and (5)
for the reduced stimulus set. The close resemblance of the two interpolated linesEw(c)

(crosses) andEv(c) (stars) demonstrates that the error made in replacingEw by the much
simpler evaluableEv is not significant.

The analytical values forEv for the two map states are depicted in figure 5 (right) as
a dashed line (binocularity) and a dotted line (ocular dominance). The crossover between
the two lines atc = 0.68 coincides very closely with the numerically observed transition at
c ≈ 0.66.

The numerically determined values forEv come very close to the analytical values for
the respective type of solution (Ev,OD at c < 0.66,Ev,non-OD at c > 0.66). Note here that the
simulations allow only the determination ofEv for that state of the map which is actually
attained by the map formation algorithm; hypothetical other states are not accessible.

The inset in the left part of figure 5 supplements the analytical results depicted in
figure 4. It shows thatEv(c) for the binocular state (dashed line) takes a substantially
different course thanEv(c) for the ocular dominance solution, while theEv(c) for the
different ocular dominance solutions (stripe width 1, 2, orN/2) remain rather close to each
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Figure 5. DistortionsEv andEw as a function of stimulus correlationsc for the SOM ocular-
dominance model.Left: Dashed line: analyticalEv of non-OD solution; dotted line: analytical
Ev of OD solution (width 1); solid line: mean ocularityO = 〈‖wr, left eye − wr, right eye‖〉r ,
indicating a state transition atc = 0.66; solid line with stars: numericalEv ; solid line with
crosses: numericalEw . The Ev values were scaled in order to compensate for the additional
summation as compared toEw . The inset is an enlargement of the cross-over region.Right:
Analytical Ev of binocular solution (dashed line), together with three analyticalEv of ocular
dominance solutions with increasing width. Note that for decreasingc, the minimal value for
Ev is attained for solutions with increasing bandwidth.

other. As pointed out in the previous section, this observation means that the transition
point for the occurence of ocular dominance does not depend much on the layout assumed
for the ocular dominance map.

4.2. Numerical phase diagrams

In a next step, we went back to the full stimulus set and simulated maps at various values
of σ , c and σs , using stimuli centred at any location. The critical valuesccrit for ocular
dominance to occur are shown in figure 6 for two typical widthsσs of the stimuli, together
with the analytical solution (solid line). The agreement between calculated and simulated
values is remarkably good, considering the crude approximations made during the analysis.

4.3. Multiplicative versus subtractive normalization

Finally we adressed a specific point of the simulation procedure, the normalization scheme.
In the present map formation model, as well as in most other developmental models, the
values of synaptic weights are increased according to a Hebbian rule (theεhrsv part of the
learning rule (1)). To prohibit an unlimited growth of synaptic weights, a normalization
of the weights has to be performed. In the present model, the normalization is done in a
multiplicative fashion, with the term normalizing a weight vectorwr being proportional to
the weight vector itself (the−εhrswr part of the learning rule, equation (1)). An alternative
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Figure 6. Comparison of numerical and analytical results for the transition from binocularity
(above curves) to ocular dominance (below curves, see exemplary inset maps), for stimulus
widths (a) σs = 0.5 and (b) σs = 2.0. Solid lines: analytical; dashed lines: multiplicative
normalization; dotted lines: subtractive normalization.
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normalization scheme, subtractive normalization, diminishes a weight vector by a constant
amount for each channel, followed by a rectification step, and a multiplicative normalization
to fine tune for deviations of the norm of the weight vector due to the rectification.
It has been pointed out (Miller and MacKay 1994, Goodhill 1994) that these different
normalization schemes can have an impact on the developmental dynamics. Consequently,
they could have an influence on the structure emerging.

The analysis technique applied in this paper evaluates only final states of an SOM.
An underlying assumption is that the detailed course of the developmental dynamics can be
neglected as long as the final state, the minimum energy state, is attained. Therefore, it is an
interesting test to see if the locations of the state transitions observed in this model depend
on the normalization procedure or not. In a final series of simulations we investigated a
variant of the SOMs, where a subtractive normalization is implemented in the following
way:

wr(t + 1) =

[
wr(t) + ε h(r − s)v − ε h(r − s) 1

‖1‖
]

+∥∥∥ [
wr(t) + ε h(r − s)v − ε h(r − s) 1

‖1‖
]

+

∥∥∥ . (16)

Here,[]+ means rectification, and‖.‖ denotes a sum norm. So normalization was achieved
by substraction of a constant uniform sum-normalized vector, followed by rectification, and
subsequent divisive normalization to fine tune for possible changes of the normalization due
to the rectification process.

The results for the phase transitions are plotted in figure 6 as dashed curves for
multiplicative normalization and dotted curves for subtractive normalization. The results for
both normalizations agree quite well with the analytical result (solid curves). The deviations
between subtractive and multiplicative normalization are smaller than the deviation of either
one to the analytical solution, such that the assumption, on which our analysis is based, of
independence from the details of the developmental dynamics seems to hold.

5. Discussion

In this paper, we have analytically solved a high-dimensional SOM-based model for the
development of ocular dominance maps. The analysis is based on the evaluation of a
distortion measure for different possible final states of the map. The distortion measure
involves sums over the sets of stimuli�r which map to particular neuronsr. To facilitate
the evaluation of these sums, we considered in the analysis only a minimal set of stimuli,
i.e. two stimuli per neuron. With this simplified stimulus set, the binocular and ocular
dominance states can be characterized as mapping stimuli from either eye, but located
at the same retinal position to one neuron, or mapping stimuli from neighbouring retinal
positions, but from the same eye to one neuron. The error introduced by this reduction of
the number of stimuli is small, as evidenced by our numerical tests which corrobarate the
analytically calculated critical values for the correlation parameterc quite well.

Our analysis mathematically underlines two pattern-formation properties of this ocular
dominance model which make the model attractive from a neurobiological point of view.
Ocular dominance solutions can occur here even at positive correlations between eyes
(c > 0). Judging from the four different sets of stimuli we investigated, this property
does not depend on the stimulus size. In contrast, a perturbation analysis of correlation-
based models (Dayan and Goodhill 1992) showed a tendency towards binocularity even for
only small positive between-eye correlations. Furthermore, the length scale of the emerging
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patterns, i.e. the width of the ocular dominance bands, does increase with a decreasing
correlation parameterc. This property of the model, which was in fact provided in
advance on numerical grounds in Goodhill (1993), nicely matches a recent neuroanatomical
observation by L̈owel (1994), where strabismic cats (interpreted here as having smaller
between-eye correlations) were shown to exhibit broader ocular dominance bands than
normal-sighted cats.

In our analysis we considered, among the different ocular dominance states, one state
with infinite bandwidth. This amounts to two spatially separate retinotopic representations
for the two eyes within one cortical area—a clearly unphysiological state. This state in
principal can occur in many models, and has been noted to minimize energy functions
(Dayan 1993). It is an interesting aspect of our analysis that there are regimes in parameter
space where this state is not the energetically optimal one. While other arguments to dismiss
the existence of this state (in particular the argument that retinotopy is established before
ocular dominance and cannot be refined to such a large degree, see von der Malsburg (1994))
remain fully valid, we here have the additional argument that even from a map energy point
of view this state need not dominate.

The present analysis rests on an evaluation of the final state of the map, without explicit
consideration of the dynamics which lead to this state (apart from the assumption that the
dynamics do indeed lead to the energetically optimal state). A competing method of analysis
for SOMs considers the stability of particular states under the learning dynamics (Ritteret
al 1992, Obermayeret al 1992). This latter approach has been applied to the feature map
variant of the SOM, where receptive fields are described by a small number of parameters.
In contrast, our distortion measure method is specifically suited for high-dimensional SOMs,
where receptive fields are explicitly modelled as synaptic weight vectors with internal
structure. The stability analysis method for feature space SOMs enables the wavelength
of unstable modes of the map to be calculated. The dependence of the wavelength on the
SOM neighbourhood widthσ , on a possible decrease (‘cooling’) ofσ during development,
and on parameters related to the correlation between eyes, is intricate and requires detailed
discussion (see Pawelziket al 1995, Scherfet al 1996).

In order to test whether or not our results are indeed independent of the details of
the developmental dynamics, we also simulated maps with a subtractive normalization
procedure, a variation of the multiplicative normalization usually employed for SOMs.
The close match of numerical results for either normalization procedure is interesting in
its own right. In recent years, various investigations (Miller and MacKay 1994, Goodhill
and Barrow 1994) have focused on the consequences of different normalization procedures
in map-formation algorithms. While these authors found, in their map-formation models
and examples, that the subtractive normalization leads to more ‘sharpened’ receptive fields,
representing ‘extreme’ inputs, these results apply in a strict sense only to the particular
models and/or stimulus set employed in these investigations. We report here that in the
present SOM model both normalization schemes lead to identical results for the transition
to non-trivial patterns. This discrepancy may arise from the strong nonlinearity employed in
the SOM-mapping rule as opposed to the linear Hebbian learning employed by Miller and
MacKay (1994). The difference between multiplicative and subtractive normalization could
be larger if stimuli of an extension substantially larger than a receptive field size are used.
This hypothetical consequence of very large stimuli could be the explanation of the failure
to find ocular dominance maps with multiplicative normalization in competitive Hebbian
models, as reported by Goodhill (1993) and Goodhill and Barrow (1994). Our results rather
suggest that the difference between the normalization schemes might be case-dependent and
might play a less prominent role than previously anticipated.
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