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Design Principles

This thesis is not a scientific paper. I deliberately chose not to write in a very
formal style without any adjectives and such. Instead, this is more like a textbook.
Of course, it is not really a textbook, but it is rather a textbook than a paper. I
used the phrases “that is” and “i.e.” a lot, although you often hear that one should
avoid such constructs because they reveal that the text before the phrase is so
complicated that it does not explain anything while the following text contains all
the information. I object to that and use them when two different formulations are
available. According to my experience, reading things twice in different formula-
tions clarifies things much better than reading the same thing over and over again.
Furthermore, I absolutely disagree with the advocates of “avoid ‘we,’ never use ‘I,’
and use passive voice instead.” The readability of texts has been found to be by
nothing else more improved than by this rule being disregarded, i.e., I found that
nothing else improves readability more than disregarding this rule.

I also intentionally left out any generic theoretical background information to
prevent the text from being cluttered up with too many side stories. I wanted to
directly lead to the results, giving every little detail that is necessary but nothing
more. However, where explanations of general concepts seemed to be useful or
necessary to give a more comprehensive picture, they were added as a footnote.
The text is also not intended as a presentation of results to a group of specialists
but aims at a broader audience.

You may have noticed that the thesis is laid out on landscape paper. There are
two main reasons for this: First, reading documents in electronic form becomes
more and more popular while at the same time computer displays tend to become
wider. With the traditional portrait orientation, pages have to be displayed piece-
wise or cover only half of the screen area when viewed in full. In contrast, the
page of a landscape document neatly fits today’s display dimensions. Second, ty-
pographers consider a line length of at most 60 to 70 characters to be optimally
readable. Compliance with this rule normally requires rather large page margins
or typesetting in two columns. However, in portrait orientation, the columns are
necessarily narrow and long—a format that significantly deviates from the aes-
thetic proportions of the paper itself (which are somewhat close to the Golden

Ratio). The landscape document allows for small page margins, and thus optimal
resource usage, by dividing the page into two columns, each of which provides an
aesthetically pleasing text area that also observes the line length rule.

Following the idea of electronic readability, I chose Concrete Roman as the main
font for the document. Some people advise to use sans-serif fonts for digitally
presented text because the thin serifs tend to be poorly rendered on low-resolution
displays. However, serif fonts have a long tradition in printing because the serifs
help to visually group letters and especially in guiding the eye along the line of text.
The Concrete font created by Donald E. Knuth has a strong advantage: it uses a
nearly constant stroke width, while in the standard LATEX font, Computer Modern,
and the popular Times, letters are partly composed of very thin lines. Thus, on a
computer display, pages typeset in Concrete are readable even when scaled down
to small sizes because there are no thin lines which disappear or are smeared out in
font anti-aliasing and there are serifs to guide the reader’s eye. Last but certainly
not least, Concrete’s slightly typewriter-ish appearance tints the document with
a beautiful, old-fashioned look. The font chosen for the chapter and section titles
is the sans-serif Avant Garde, which is very contrasty to the old-fashioned style of
the main font while not looking misplaced. Unfortunately, it is too contrasty to
be used with Concrete in the same line and there is no bold face of the latter, so I
had to use Computer Modern Bold for the title part of the figure captions.

Speaking of figures: When preparing a paper, the included figures are often
required to be black-and-white compatible. However, color as an independent
information dimension allows producing very compact figures of high information
density. In this thesis, I deliberately ignored b&w-compatibility, though mainly for
aesthetic reasons: it adds unnecessary visual complexity like different line styles
and often requires use of less pleasing color palettes.

One last remark: For best reading experience, the reader should assume that
every unusual use of words or phrases and unannounced non-compliance with ty-
pographic conventions or those regarding “proper scientific style” is intended and
meant as an expression of sheer creativity or just as a joke. In most instances this
is indeed the case.
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1 Introduction
Epidemiological research in general most probably needs no justification. Its

fundamental objective, to understand the mechanisms of human diseases and pos-
sible intervention strategies to prevent outbreaks or at least lessen the consequences
thereof, is easily recognized as being important. Classical epidemiological research
in the medical sciences focuses on capturing the current state of a population with
respect to a certain disease (e.g., the prevalence of the disease), statistical correla-
tions among risk factors from which causalities like “smoking increases the cancer
risk” might be inferred, and small-scale dynamics like “who infected whom?” by
back-tracing contacts of infected individuals. Aside from this, an increasing group
of scientists is trying to understand the dynamics of diseases on a global scale.

Early work from 1927 [Ker27] provided mathematical models to describe the
dynamics of a disease (i.e., the number of infected individuals over time) in a
single population like a school or a small village. More sophisticated models were
developed to take into account the interaction between several villages or town
districts, providing descriptions of the dynamics in a country of the Middle Ages.
The basic assumption behind those models is that people can travel to neighboring
villages only. Modern technology, however, has lead to a dramatic change of the
human travel behavior. Today it is possible to cross the whole country in one
day by car or train—or even across continents by plane. While ancient diseases
like the Black Death spread over the country in a slow wave, modern diseases like
SARS spread over the whole world within days. Thus, while ancient diseases can
be modeled by agents on a regular grid, for modern diseases we have to take into
account the complex travel networks that humans form in their everyday life.

Furthermore, early models used to use homogeneous populations, i.e., they as-
sumed that there is a “typical personality” which can be used to represent every
person of the population. In the SARS pandemic, however, very few people in-
fected many more people than most of the other infecteds did. These so-called
superspreaders play an important role and for many diseases, especially for sexu-
ally transmitted ones, the distribution of contact rates of individuals obey a power
law, i.e., there is no “typical” contact rate valid for all individuals of the population.
Thus, the social heterogeneity of a population can have significant impact on the

disease dynamics and has to be captured by accurate models.
Modern epidemiological research in the mathematical and complex dynamics de-

partments therefore focuses on the understanding of complex social and geographi-
cal heterogeneities and their impact on global diseases. With better understanding
of these factors, more effective actions can be proposed to prevent global outbreaks
of emerging diseases or work towards the extinction of endemic diseases.

In this study, I focus on the impact of the geographical aspects of a popula-
tion’s response to a disease outbreak. In particular, I will use spatially continuous
reaction-diffusion models of socially homogeneous populations as a basic frame-
work and define three kinds of response scenarios: A random panic reaction, a
more intelligent directed flight reaction, and a strategic flight reaction. Though
the underlying framework does not correctly capture modern human travel behav-
ior, it still provides an effective testbed for investigating the basic mechanisms in
the scenarios. In these models, as mentioned above, diseases spread via travelling
waves. Qualitatively, the response may accelerate or slow down the disease spread,
which can be quantized by measuring the equilibrium wave front velocity. Fur-
thermore, the population’s reaction might lead to outbreak prevention, thus I will
also investigate the initial non-equilibrium dynamics.

While most of the theory in Chapter 2 can be found in textbooks on mathe-
matical chemistry or biology that cover reaction-diffusion systems [Mur89, Gar85],
Sec. 2.6, which introduces the systems with response scenarios, presents, to my
knowledge, original work—as do, of course, the results and dicussion chapters.
The methods presented in Chapter 3 can also be found in any textbook on compu-
tational science [Pre02], but the systematic investigation of the accuracy in Sec. 3.3
again presents own work, though parts of it probably have been published or at
least investigated earlier already.

1.1 Synopsis of Theory and Methods

In this section I will give a figurative and intuitive presentation of the theoretical
background and utilized methods. This should make it possible for the experienced

1



Chapter 1. Introduction

and impatient reader, who is not interested in the details of the underlying theory
and methods, to directly jump to the Results and Discussion chapters starting
on page 33. But primarily, this chapter aims at making it possible for interested
people without strong physical background to do the same.

Infectious diseases can be modeled as chemical reactions. It’s that simple: Assign
a label to healthy, susceptible people, and a label to infected people. Then,
an infected person can infect a susceptible, which is expressed by the following
chemical reaction:

Furthermore, the reaction expresses that an infected person can sponta-
neously, i.e., without having to meet somebody else, become healthy again. This
simple model of the life cycle of a sick person is called the SIS model.

We can replace the reaction with and have defined the SIR model. Here,
we have another class of people labelled , which are recovered. Since there is
no reaction converting recovered people into infecteds, this essentially means that
people gain immunity when they become healthy.

An interesting quantity is the number of infected people in a population which
I will denote with . Of course, this number changes over time and thus, we are
interested in the dynamics of the disease, i.e., the time evolution of . Within a
certain time interval , say, one week, a certain number of individuals will recover
from a disease. Let’s assume that infected people stay infected for about two weeks.
Let’s also assume that we have a bunch of infected people that have been infected
at various times in the past. Then, after two weeks, all those people will be healthy
again. Since we do not know the exact infection time of every individual we would
expect that after one week about half of all the people will be healthy. To generalize
from the disease with a duration of two weeks to arbitrary diseases, we introduce
a model parameter that states the fraction of people recovering from the disease
after one week, or more generally, within the time interval . The total number
of infected people recovering within this time interval is then given by .

A bit more tedious to derive is the positive contribution to the number of in-
fecteds per time unit, i.e., the number of infection events. For this to happen,
an infected and a susceptible person have to meet. We assume that everybody in
the population can meet everybody else with equal probability (this is not true in
reality—but it simplifies the model). Then, if an infected person meets somebody
else, the probability of this other person being a susceptible person is , the
fraction of susceptible persons in the population. We introduce another model pa-
rameter that states the number of contacts a person has per time unit. In fact,

Figure 1.1: The SIS and SIR models. Essential ingredient of both models is the
assumption of a well-mixed population (circles at the bottom) where everybody can meet
everybody else with equal probability. In the SIS model, there are only two types of
individuals in the population: susceptible (healthy) people and infected people (cf. left
circle). The SIR model adds a third type, the recovered people (right circle). The
“chemical” reactions shown in the top are those of the SIS model. The only difference
in the SIR model is that in the recovery reaction (the bottom one) an infected does not
become a susceptible (green) but a recovered person (blue) that cannot be infected again.

does not really count every contact but only those contacts in which the infected
person did something that transmits the disease to the other person (i.e., sneez-
ing). Then, in the time interval , one infected person will meet persons and
transmit the disease. But only in those cases where a susceptible person is met,
a new person is actually infected. Thus, every infected person infects
persons. And then, since there are infected persons in the population, a total
number of persons get infected every week. One small modification is

2



1.1. Synopsis of Theory and Methods

Figure 1.2: Qualitative mean-field behavior of the SIS and SIR model. In the
SIS model, the number of infected people will reach a stable non-zero level, the so-called
endemic state, since the recovery reaction ensures an everlasting “supply” for new
infections. In the SIR model, the reaction reads and thus no continuous supply
of susceptibles exist. Also, the above behavior is only observed if the infection rate
is larger than the recovery rate . If , the disease will quickly die out, because
infected persons will, on average, recover faster than they infect new people.

to be done when taking into account the total density of people. Obviously, the
probability of meeting somebody is larger in dense populations while it is smaller
in sparsely populated areas. Therefore, we expect the number of infectious con-
tacts to be proportional to the density of the people living in an area

.
Put together, in the time interval the number of infected people changes

by

We can do serious math tricks here by making very small and obtain the
differential equation

d
d

Furthermore, we will rewrite our model in terms of the density of infecteds,
, and density of susceptibles, :

d
d

The differential equations for d d are the same in the SIS and the SIR model,
but while d d d d in the SIS model, we have an additional variable in
the SIR model, namely the density of recovered people, . Here, the term

does not appear in the equation for d d but in the one for d d , since in

Figure 1.3: Diffusion. The figure shows a population density profile (blue line) and
indicates where the diffusion term leads to a local increase of the density (green arrows)
or to a decrease (red). Effectively, this can be interpreted as people moving from dense
to sparsely populated areas (black arrow).

the SIR model recovered people are not susceptible again but belong to their own
class. The dynamics of the SIS and the SIR model are depicted in Fig. 1.2.

We can easily add a geographical dimension to the model by redefining the
densities as functions of space and time: , , and , where at each
location the total density is (with in the
SIS model). Now, the above differential equation describes the local dynamics of
the disease at each location . Adding that people are slowly and randomly moving
around, the density of infecteds obeys the following equation, which is enriched by
a diffusion term :

The diffusion coefficient is also a function of the location, . Of
course, and are added to the respective equations. What
is the effect of this? Since the second derivative indicates curvature, the diffusion
term is positive for convex parts of the function and negative for concave parts
(cf. Fig. 1.3). For constant diffusion coefficients , this leads to a
leveling of the population density, i.e., after some large time , the population
density profile will essentially look flat, and for , it is constant:

.
The diffusion terms are not effective on the total density , but on the densities

, , and . This means that for , each individual density will level out to
constant functions (and thus, the previous claims regarding the total population
density follow). This also means that local deviations from these desired flatness are
immediately “smeared out.” In particular, a disease emerging at a certain location

3



Chapter 1. Introduction

Figure 1.4: Emerging travelling waves in spatially extended systems. The figure
shows a series of snapshots of the number of infecteds or density of infecteds in a one-
dimensional space. Initially, a small number of infected people is placed at and,
successively, the local reactions produce more infected people at that location while the
diffusion carries the infected people towards neighboring places. The interplay of both
effects eventually leads to a stable wave front that moves across the system.

, indicated by a raise of the density , will by diffusion quickly lead to
an increasing density of the neighboring sites, , . The combination
of local disease dynamics (reactions), which, as long as is small and is large,
exhibit exponential growth of , and the diffusion process leads to the emergence
of epidemic waves rolling over the population (cf. Fig. 1.4).

As the interested reader probably quickly figures out, the diffusion process is
undirected, though its strength can be locally different. I would also like to model
population responses where people run away from an emerging disease, thus where
the travel behavior is directed. We can achieve this by adding a drift term to all
the density equations:

Again, the drift coefficient is a function of space and time, . The
effect of the drift term is that people at location feel a force to travel to the
right if or to the left if . Thus, contrary to the undirected
diffusion, people prefer to travel in one direction.

In this framework we can motivate three different kinds of responses to an epi-
demic wave running through the system (Fig. 1.5). The first scenario defines a
diffusion coefficient that is proportional to the local density of infecteds (the pa-
rameter controls the strength of the response),

This can be interpreted as a simple panic reaction where people in infected areas
feel the urge to move away, no matter in what direction.

The second scenario models a directed flight where people compare the level
of infection at their own location with that in their immediate environment and
move towards regions with lower density of infecteds. This is expressed by the
spatial derivative of density of infecteds in the drift coefficient (again, is a control
parameter indicating the response strength),

In the third, strategic flight scenario, the previous ansatz is extended to an
integral force

ˆ

d
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1.1. Synopsis of Theory and Methods

This is a generalized gravitational force where the density of infecteds is to be in-
terpreted as repelling mass. The integration kernel determines the influence
of infecteds at a distance on the repelling effect. In this study I use the kernel

max max

which, depending on the parameters max and is rather small for , raises
to a peak at max, and then falls back to zero for max. This means
that infecteds which are far away have no repelling effect (they are not perceived),
infecteds at a distance max have a strong repelling effect (they are perceived
as a risk factor), and infecteds at a close distance have, if at all, a weak
repelling effect (they are perceived as a risk factor but a flight is considered either
useless, since one will be reached by the wave anyway, or unethical, since one’s
own flight might further facilitate spread of the disease into currently unaffected
regions).

In this work, I study the effect of the three response scenarios on both the
speed and shape of the travelling wave front. The differential equations presented
above are discretized into a one-dimensional lattice with distance between
the nodes and integrated in time using the Runge-Kutta method. To provide a
sufficiently large simulation area with low computational effort, a shifting window
mechanism is used: The system is initialized with a small fraction of infecteds at
the left end of the simulation area (as in Fig. 1.4) and each time the wave reaches
a certain point of the simulation area, one lattice site is removed from the left
and one is added to the right. This way, I follow the wave in a moving frame
which allows me to observe it for long times. The wave front speeds and shapes
are measured after some equilibration time ensuring that a fully developed wave
front has emerged. Non-equilibrium dynamics, i.e., initial outbreak behaviors,
are also investigated in a two-dimensional system, which naturally rises from the
one-dimensional equation introduced above ( denotes the two-
dimensional spatial derivative):

Figure 1.5: Response scenarios investigated in this study. Above: The plots show
the number of infecteds (or density of infecteds) in a one-dimensional space. The black
arrows visualize the effect of the different response scenarios by indicating the effective
motion of people. Below: The integration kernel used in the strategic flight scenario.
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2 Theory

In this chapter, I will present the theoretical background of this study. I start
with introducing the long used compartmental models, which describe the disease
dynamics in a single well-mixed population, and point out the most important as-
pects of their dynamics. Averaging out stochastic fluctuations in large population
sizes yields the deterministic mean-field approximation of the models, as presented
in Sec. 2.2. Next, the compartmental models are reformulated to incorporate pop-
ulation density, necessary to reflect local density fluctuations in spatially extended
systems which are then presented in Sec. 2.4.

Section 2.5 introduces geographical structure to the models by embedding a
linear chain of cities into a one-dimensional space. By going to the continuum
limit we obtain a spatially continuous model which serves as the foundation of
the study. In the framework of this model, I will finally introduce three different
response strategies to a forthcoming epidemic wave (Sec. 2.6).

2.1 Society of Classes: Stochastic Compartmental
Models in Epidemiology

Compartmental models as used in epidemiological modeling since over eight
decades [Ker27] are derived from chemical reaction models. The idea is simple:
We have a population of, say, individuals. We now assume that this population
is well-mixed, that is, every individual has a chance to meet every other individ-
ual in the population and these chances are equal for all possible contacts. Now
comes chemistry: We classify every individual in the population as a certain type
and then define reactions between different types of individuals. In epidemiology,
the interaction between healthy and sick people is investigated, so we introduce
two classes: Susceptibles, which are susceptible to infection, and infecteds, which
carry an infectious disease and are able to pass it on to a susceptible person. This
passing-on is modeled as a chemical reaction of the form

Thus, we have an auto-catalytic reaction where infected people transform suscep-
tibles into infecteds. Of course, infected people will become healthy after some
time, which we can model with a spontaneous reaction like

This model is known as the SIS model since every individual will run through
cycles of being susceptible, infected, susceptible etc., and can be used to model
diseases like the flu. However, there are other diseases where infected people can
become healthy again but are then immune to the disease (pox, for example).
This can be modeled by introducing a new class of individuals, the recovereds or
removeds. In fact, there are diseases where people stop being infectious because
they actually die rather than becoming healthy—from the modeling point of view,
we don’t care about the difference. If we modify the spontaneous reaction
to read

we captured exactly what happens to pox-infected people: After some time they
transit from the infected state into a recovered state without being susceptible
again, i.e., without being able to participate in the auto-catalytic
reaction. Analogously to the SIS naming convention, this model is then called the
SIR model.

These two, SIS and SIR, are the most fundamental models in epidemiological
modeling. There is an extension of SIR, called the SIRS model, which adds a third
reaction of the form , i.e., recovered people can become susceptible again.
This is a more accurate model of, for example, the flu: one actually is immune to
the particular strain of flu he or she was infected with and only after some time
the flu will have evolved into a new form to which this person is then susceptible
again. Speaking of time, this is another crucial ingredient to the chemical reaction
models. But let me first shortly introduce another family of compartmental models
popular in epidemiology: We can define another class of individuals, the exposed
people, which represent persons already carrying the disease without being able to

7



Chapter 2. Theory

pass it on. This is an even more accurate model of the flu, since it can account
for the incubation time, but in our area of interest it does not qualitatively change
the overall dynamics. However, just to be comprehensive, there are SEIS, SEIR,
and SEIRS models and their names already describe how they work. To give one
example, the SEIR model is described by this set of reactions:

Back to the time issue. Every reaction occurs at a certain rate which is noted
above the reaction arrow. Thus the complete SIS model is given by

The reaction rate states how likely the reaction occurs within a given time period
and under the condition that all participating individuals (on the left hand side)
can easily meet. We will see what this rate exactly means when going on to
expressing the chemical reactions in mathematical equations.

Let us model our SIS population as a tuple of two numbers, , stating the
number of susceptibles and infecteds, respectively. Of course, nobody can hide
from our classification system, thus (in an SIR model we would have a
triple with , but let us focus on SIS for a moment). Note
the simplification that underlies this model: We are not interested in the health
state of every single individual person, i.e., we do not track whether John Smith
is sick or healthy, but we are only interested in the total number of infected and
susceptible people. Now, given at a time , what is the value at a short
time later? Obviously, as decreases, will increase, and vice versa, due to
the conservation law .

How can be decreased? The only way to make this happen is by an infection
reaction which transforms a susceptible into an infected person. Thus, the inter-
esting question is how probable it is that such a reaction happens within the time
interval . Apparently, the probability is proportional to the time interval, thus
it will be of the form inf . Furthermore, the more infecteds are in the system,
the more chances there are for one infected to pass on the disease—in fact, if every
infected person has an equal chance of meeting other people, the probability of an
infection occurring will be proportional to the number of infecteds,

inf

For an infection to occur, it is not only necessary that an infected person meets
somebody, but the person must meet a susceptible person. Recalling the assump-

tion of the well-mixed population, chances of meeting any person are equally dis-
tributed and thus the chance of meeting a susceptible person equals the proportion
of this class in relation to the population size:

inf

Finally, we want to write an equal sign and give a name to the (unknown) propor-
tionality constant:

inf

This proportionality constant is the reaction rate. Why? Given one infected person
in a large1 and fully susceptible population ( inf ), states the proba-
bility of an infection within a unit time interval. But we should be aware of what
we have done: We stopped modeling the infection process, i.e., we stopped thinking
about what happens in reality beyond meeting other people and put everything
else into this single proportionality constant.

Similarly, but much more straightforward, we can formulate the probability of
being increased, which can only happen by a recovery reaction ( ). Since

this is a spontaneous reaction which happens at rate , the chances for a single
infected person to recover within the time interval are . Since there are

infected persons in the population, the probability that any one infected person
of the population recovers, i.e., the probability of changing to from

within the time interval , is

rec

Almost done. We need to assemble the parts: Given the initial condition ,
the probability of finding susceptibles and infecteds in the population at time

is, of course, 1. But given the probability of finding the system in any
particular state at time , what is the probability of finding the system
in the same state at time ? We can write

and need to figure out : How does the probability of finding the system
in state change within a small time interval? This we already investigated

1Such that is essentially .
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2.2. Ignoring Chances: The Mean-field Approximation

above, so we just need to collect the possible state transitions and do some book-
keeping: All state transitions that go from to some other state will de-
crease and all transitions that go to will increase it. The transition

, i.e., an infection, occurs with probability inf if the
system is in state , which is fulfilled with probability . Thus, the proba-

bility of the infection event to happen is inf . Similarly, the probability

of the infection event is inf . The latter
infection event increases the probability while the former decreases it. Sim-
ilar considerations can be made for the recovery events and we will end up with
the following equation:

inf rec

inf rec

We can take the limes and obtain an ordinary differential equation
(throughout this thesis I will use d as a shortcut for d

d ):

d inf rec inf rec

(2.1)
This is the so-called master equation of the SIS model.2 It governs the complete
time evolution of the probability of finding the system in state , for any state

. With a given initial condition, the dynamics of the system are determined.
2In its general form, the master equation governs the dynamics of stochastic systems. Such

systems are represented by possible states and a transition probability rate matrix
which entries state the probability rate for the transition from state to state . The

dynamical variables are the probabilities ( ) of finding the system in state
and the evolution thereof is described by

d

There is a continuous version as well: If the system cannot be modeled by discrete states,
functions must be given for the probability rate at which the system transits from state

to state and the evolution of the probability of finding the system in state is governed
by

d
ˆ

d
ˆ

d

More on master equations and other random stuff can be found in Gardiner’s Handbook of
Stochastic Methods [Gar85].

Well, actually, the stochasticity of the dynamics is determined—the actual evolu-
tion of an actual system is then of course subject to random fluctuations.

This might appear somewhat unsatisfactory since it is hard to actually tell some-
thing about the dynamics of the SIS model. There is one thing, however: If
there are no infecteds in the system, the infection probability rate inf vanishes
( inf ). Thus, if at any time the number of infecteds in the system drops to
zero, it will never increase again. And, interestingly, since implies a non-zero
recovery probability rate rec , there will always be the possibility of the system
going into this so-called absorbing state . Everything that is possi-
ble will also happen if one waits long enough, so we can conclude this chapter with
the interesting insight that, in theory, every SIS-like disease in a single well-mixed
population will eventually die out (the same applies to the SIR model—though for
different reasons, as the interested reader will quickly figure out).

No, wait. By simulation we can gain a little more insight. Figure 2.1 on the
following page visualizes the time evolution of the probability for different
model parameters. It can easily be seen that for small , i.e., less “aggressive”
diseases, and small system sizes the probability of the absorbing state quickly
increases. Thus, in these cases the disease is expected to go extinct very fast.
For large , or to be more precise, for any but large enough systems there
seems to exist a stationary solution. From the above considerations we know that

since every trajectory will eventually hit the absorbing state,
but the time scale of the decay increases with the system size and, in fact, for half
of the simulated systems the decay was slower than the numerical accuracy of the
simulation program was able to capture. Also note that with increasing system
size the appearingly stationary state approaches the value marked by the dotted
lines. And last but not least, notice that the relative variance of the branch
of the probability distribution shrinks with increasing system size. In the limit

we would expect the relative variance, i.e., the influence of the stochastic
fluctuations, to vanish.

2.2 Ignoring Chances: The Mean-field
Approximation

Whenever one encounters statistics it is worth taking a look at the statistical mo-
ments. The same is true for the dynamics of the stochastic compartmental models
introduced above—which are described by time-evolving probability distributions.
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Figure 2.1: Time evolution of the SIS model’s state probability distribution.
Simulation time runs along the -axis and the state index (number of infecteds) along
the -axis. The colors code the probability of finding the system in state at time
, . The simulations have been carried out for , three different values of ,

and five different system sizes (from top to bottom). The initial
condition was , i.e., the system was set up with five infected individuals. The
color band range was chosen to be bright yellow for the maximum value of at the
largest simulated time, i.e., max . The solid white lines are the mean values ,
the dotted grey lines mark the value .

The most interesting quantity we can look at is the first moment , the expected
number of infecteds in the system at a time . Here is the differential equation that
governs its evolution:

d d inf rec

inf rec

Nothing exciting happened so far—we simply inserted Eq. (2.1). Note, however,
that the sum over all states is parameterized by only. This is possible due to
the conservation law : For any given the number of susceptibles is
defined and thus the complete state of the system can be described by one
variable—either or . This would not be possible in the SIR model, since the
conservation law in that model reads and one needs two variables
two uniquely identify the system’s state. Let us exploit the conservation law again
by expressing every in the formula in terms of and :

d inf rec

inf rec

Note also that we dropped two terms, the one for in the first sum and the
one for in the second sum. Both terms vanish because they involve the
probabilities and , which are zero for all times since they refer
to unreachable (i.e., non-existing) system states. Next, we will express everything
in terms of by rearranging sum indices:

d inf rec

inf rec

We can safely add the term to the first sum because the infection probability
rate is zero for (since then ). Similarly, the term can be added
to the second sum, since the recovery probability rate vanishes for the state where

10
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no infecteds exist. Then, the third sum cancels the and factors in
the first and second sum, yielding the following:

d inf rec

This is refreshingly simple and can be rewritten using the notation of expectation
values as

d inf rec

or, after inserting the definitions of the probability rates,

d

Yet we still have not expressed everything solely in terms of and and
still depend on other statistical properties than just the first moment. We have
to resolve the correlate into simple expectation values and things would be
simple if and were independent variables—but, of course, they are not, since

(or in the SIR and SIRS model). However, we can make
some approximation here. We would like to see , i.e.,

which boils down to approximate . This is valid if the variance of the
probability distribution of finding a certain number of infected people is zero, that
is, if there are no stochastic fluctuations in the number of infecteds.3

Of course, that is not the case, but the fluctuations will become less important
when is large. Figure 2.1 can be seen as empirical evidence for this claim, but
I will try to present a more rigorous argument as well: The SIS system reflects a
Markovian jump process on the -axis where a jump to the left (smaller ) occurs
with probability rate and a jump to the right (larger ) with rate

(cf. Fig. 2.2). There is a state where the two rates are equal:

For the recovery rate is larger than the infection rate and vice versa for
. Thus, for , the jump process is biased towards the state . Assume

3The variance is zero if and

only if .

Figure 2.2: Jump processes in the state space. The top figure shows the state
space of the SI and SIS model. Since the two dynamical variables and are coupled by
the conservation law , the state space is one-dimensional. An infection (red)
leads to an increase of the number of infected people, , while a recovery (green, only
in SIS model) leads to a decrease. In the bottom figure, the state space of the SIR and
SIRS is shown. Since here we have three dynamical variables and the conservation law

, two variables are necessary to index a state. The deimmunization event
(blue) depicting the reaction is present in the SIRS model only.
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for a moment that for the probability rates are essentially equal to
and . Then, in the vicinity of the jump process is an unbiased
continuous time random walk with jump rate in both directions. As I
will derive more detailed in Sec. 2.5, if we start a random walk at , after time

the system’s expected displacement is states. Now comes the interesting
part: If we increase , then will increase proportionally. Why? Because
and was defined to be the jump rate in the vicinity of . Thus, the expected
displacement of the system after time scales with . Now, the mindful reader
will object that the assumption of equal jump rates around is a bad one. In fact,
the bias of the jump process in the vicinity of , , also scales
with . Therefore, we can cheerfully conclude that is an upper bound for the
expected displacement of the system (due to the bias in the jump rates, one would
probably expect a time-independent upper bound as well, but this result is enough
for our purpose). So, the expected displacement, i.e., the fluctuations of the system,
scale with . This means that for the fluctuations increase unbounded
as well, but their relative value , which determines their importance, goes
to zero.

Why is the relative value interesting? The fluctuations influence the expected
number of infecteds, , only if they are asymmetric around . This is the case
due to the absorbing state (and the finite system size that prohibits ).
However, the fluctuations are driven away from this absorbing state when scales
linearly with since the fluctuations scale sub-linearly. Thus, in the limit
we obtain

d

the so-called mean-field approximation4 of the SIS model, describing the time
evolution of the means of the dynamical quantities. We can further unclutter
notation and generalize the equation by substituting expected population numbers
with the (expected) fraction of susceptibles s and infecteds j :

d j s j j d s d j s j j (2.2)

Similarly, the mean-field equations for the SIR and SIRS model can be derived,
4The name mean-field originates from the mean-field theory (or self-consistent field theory) in

statistical physics, which is used to solve many-body systems with complex interactions by
replacing them with a system of approximatively equivalent average, effective interactions:
the mean interaction field.

Figure 2.3: Qualitative mean-field behavior of the various compartmental
models. The SIS and SIR model are the two models of interest in this study, but
the SI and SIRS model are shown for reference as well. The SI model is very similar to
the SIS except that, due to the lacking recovery reaction , the system will go into
the fully infected state instead of a stable state with .
The SIRS model extends the SIR model by an reaction and exhibits damped
oscillations around a fixed point.

which is left as an exercise to the interested reader:

d j s j j d s s j d r j (SIR)
d j s j j d s s j r d r j r (SIRS)

Now, we can have a look at the dynamics of the expectation value. First, we
easily determine the fixed points of the SIS model. Clearly, if j , both d j and
d s are zero. The other root of the function is determined by s and with
the conservation law s j we thus obtain the two fixed points

j s and j 1 s

The first (trivial) fixed point is not surprising: It tells us that if the system lacks
infected people it will stay like this. We already know this from our considerations

12
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in the last section. The second (non-trivial) fixed point, however, is contrary to the
results we found above. It tells us that there exists an equilibrium concentration
of infected people, which is also called the endemic state—an SIS-like disease in a
single population will maintain a constant concentration j of infecteds (remember:
we concluded the previous section with the statement that every SIS-like disease
will eventually go extinct). But it is important to note that the mean-field just
describes the time evolution of the expectation value in the absence of fluctuations
while the master equation describes the time evolution of the whole probability
distribution. The mean-field description does not capture the effects of the ab-
sorbing state and thus it is not surprising that it predicts a stable non-zero
level of infected people, as the stochastic system is also biased towards j .

For the SIS model, we can even solve the differential equations and obtain an
analytical expression for the course of an epidemic:5

j

j

For the exponential vanishes and j j as we already know
from the fixed point analysis. Note that for j the solution is undefined—in
this case j due to the trivial fixed point j .

The SIR model cannot be solved analytically, but we can learn about the dy-
namics from a fixed point analysis. Clearly, there is a fixed point

j

5In equation (2.2), we substitute j and d d j d j j (thus d j d )
and obtain

d

hence d

This we can solve by the ansatz

d

By insertion we get

and see immediately that , and that is to be determined by the
initial condition :

Substituting back (with j ) we obtain the solution for Eq. (2.2).

regardless of the values s and r . Also, for s and j we find d j

as in the SIS model, but it is not a fixed point since d s and d r . This
is interesting, since d j changes its sign depending on s. Thus, while the trivial
fixed point is unstable for s , i.e., d j for j , it will become stable if
s , since then the number of infecteds is driven back to zero.6 Thus, if we
start with a fully susceptible population and a small amount of infecteds j ,
the density of infecteds will rise until the density of susceptibles has dropped to
s (note that at that time j , since some of the infecteds will
have recovered already). After that, the susceptibles will further decrease but the
infection reactions do not outrun the recovery events anymore and thus, while the
density of recovered further increases, the density of infecteds decrease. For ,
the disease will have died out and the density of recovereds will have approached
a fixed point r with s r , which values cannot be computed analytically.
The qualitative dynamics of the SIR model are depicted in Fig. 2.3 (top right).

2.3 Megacities and Ghost Towns: Variable
Population Density

In this section, we will shortly revisit the compartmental models introduced in
Sec. 2.1 and extend the concept to situations where population density plays a
role. Remember that we deduced the infection probability rate

inf

from the two considerations that it should be proportional to the number of in-
fecteds, , and the probability that an infected person meets a susceptible person,

. We have implicitly assumed that the population density is . If the pop-
ulation is spread over an area , one would expect the probability of one person
meeting another person to scale with the inverse of the area, if the population size

6The observing reader may object that even for large s, the number of infecteds will only raise
if . This is right and an important insight that I completely overlooked above. We can
define the basic reproduction number as the average number of people an infected
person in a fully susceptible population will infect during its infection period (remember that

can be interpreted as the average number of infectious contacts and as the recovery rate,
thus as the average time of infection). Only if a disease breakout is possible,
since otherwise not enough secondary cases are produced before everybody is healthy again.

13
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is constant, and linearly with the population size, if the area is constant, thus:

inf

This naturally leads to the mean-field equation for the density of infecteds
(with density of susceptibles and total population density ):

d

However, if we want to stick to the notion of fraction of infecteds j , the
equation reads

d j s j j

The former equation looks similar to the equation we already derived in Sec. 2.2
but the fixed point is different because now and thus

i.e., the fixed point scales linearly with the population density. This might not be
surprising because we would suspect to have higher contact rates in dense popu-
lations and therefore a higher endemic state. Nonetheless, it is remarkable that
the corresponding density of susceptibles is independent of the total population
density, , while, of course, the equilibrium fraction of susceptibles does
scale with population density: s . Also, it is worth noting that the fixed
point ceases to exist if (since there cannot be a negative density of infected
people) and thus there is a so-called epidemic threshold on the population density
below which the disease cannot break out.

2.4 Population Networking: Spatially Extended
Systems

So far, we have seen models that can predict the course of a disease brought into
a single well-mixed population. Obviously, these models’ applications are very re-
stricted. The world is not a single well-mixed population but individuals interact
in a very complex way with each other. The next step in the modeling process
towards a more versatile model is to set up a system of multiple populations. Each
of the populations is assumed to be well-mixed, i.e., we simplify the complex inter-
actions between the people within a single population by assuming that they have

equal contact probabilities. However, we introduce some sort of coupling between
the populations that is not necessarily in the way that each population has equal
contact probability with every other population. Thus, we have broken down the
whole population of, e.g., a country, in which the assumption of equal contact
probabilities is plainly wrong, into several populations of, e.g., cities, that are con-
nected by travellers between the cities and in which the equal contact probability
assumption is probably a bit less wrong.

The mathematical representation of this is a digraph which nodes
represent populations and which directed edges represent couplings between

populations (Fig. 2.4). The weights of the edges indicate the strength of the cou-
pling.7 In the following, we will rethink everything we have done in the last sections
and apply it to spatially extended systems.

Assume we have populations with population sizes ( ). Or,
put in different words, we have individuals that can be classified
into classes by their population membership. Travelling from one population
to another can be expressed as the chemical reaction

where a person from population becomes a person from population .8 This
reaction occurs at rate , which is the coupling strength mentioned above. From
this, we can construct a master equation for the probability of a person finding

7There are two fundamentally different ways to model the interaction between two populations:
With dispersive coupling, the coupling strength denotes some sort of travelling rate and indi-
viduals from one population diffuse to the other population (and then to another population
and so on) according to that travelling rate. This would perfectly model the travel behavior
of hobos, people who—especially in the time of the Great Depression—were moving from
place to place looking for temporary work. If dispersive coupling is modified such that each
individual has a home population where it returns before diffusing to a different population, it
can be used to model the travel behavior of commuters. However, the actual travel behavior
of actual people is probably somewhere in between. In contrast to the dispersive coupling,
in directly coupled systems the coupling strength denotes the fraction of the population that
is constantly interacting with the other population, i.e., it denotes the overlap between two
populations in terms of the equal contact probability assumption. This is not modeling an
actual travel behavior but rather an effective contact between populations. In this study, I
focus on dispersive coupling since this is the only coupling for which we can derive a spatially
continuous reaction-diffusion equation.

8Yes, I use for a time-dependent function and for an integer index—later I will also use it
to denote a time- and space-dependent function. It is a long tradition in physics to use
ambiguous notation and the reader is expected to work out the meaning of each appearance
from the context.
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Figure 2.4: Network of populations with inter-population couplings. The nodes
represent populations (or cities, countries etc.) and the weighted and directed links
between them indicate an exchange between the populations (i.e., travelling).

itself in population :

d

The expected number of people in population is then given by and
its evolution by the mean-field equation

d

The first sum accounts for all people travelling from some other population into
population and the second sum accounts for all people travelling away from
population .

2.5 Indiscrete Models: From Compartments to
Continuous Variables

The next step in the modeling process involves a transition to continuous variables
in the spatial domain. Why would we want to do this? Back in the Middle
Ages, the country was populated by many little villages which were home to small
populations. Furthermore, long distance travelling was negligible and contacts

Figure 2.5: Linear chain of populations.

were essentially restricted to the neighboring villages. This can be modeled by
setting up a network with a large number of nodes (populations), each of which
holds a small number of people and is connected to its nearest neighbors. In the
limit of infinite number of infinitesimally small populations in a finite area, the
total population is not constrained to discrete nodes but spreads continuously over
a one- or two-dimensional area. Travelling in this case will not be modeled by
population flows from one node to another, but by diffusion.

The observing reader may object that the assumptions made in the beginning
are not adequate anymore—and she would be perfectly right. Today’s populations
are mostly concentrated into cities and thus the approach of geographically embed-
ded network models seems to be much more appropriate. Furthermore, travelling
behavior changed significantly as well. Contacts are not restricted to the neigh-
boring populations anymore, but novel transportation means such as highways,
intercity trains and especially intercontinental air traffic routes provide fast long-
range travelling opportunities resulting in significant contact rates between distant
populations which cannot be described by normal diffusion. Again, the network
approach seems to be appropriate.

However, the diffusive continuous model can still serve as a sandbox—a “toy
model” in which certain aspects of idealized scenarios can be investigated. In par-
ticular, it is easily possible to define the propagation speed of a pandemic wave
crossing a country in a continuous model, which is difficult to do in an arbitrary net-
work. That said, I already forestalled an important result: In continuous models,
wave solutions exist and describe the time evolution of the spatial distribution of,
e.g., the Black Death pandemics in the Middle Ages. But let us derive continuous
models first and then take a look at their characteristics.

Consider a linear chain of populations with links between nearest neighbors
(Fig. 2.5). In the network formulation, this is expressed by the coupling strengths
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i.e., a link is established from population to population if is either the preceding
or succeeding population to . In this formulation, all links are symmetric and of
equal strength . We might want to generalize this to

Now the coupling of the -th population to the preceding (“left”) population in the
chain will be of strength and the coupling strength to the -th (“right”)
population will be . Following the mean-field consideration from the last section,
the population dynamics will be governed by the ordinary differential equation

d

(2.3)

We did not yet embed the chain into a geographical space. To do this, we simply
associate with each node a position on a one-dimensional line such that node is
at position where denotes the distance between two adjacent pop-
ulations. Furthermore, we have to sacrifice some of the generality regarding the
coupling strength introduced above in order to be able to derive a diffusion equa-
tion: we will assume a symmetric coupling of the form (note that
the symmetry is around the nodes—the network’s links can still be asymmetric).
Now, to give the geographical information any relevant meaning, it has to be found
in the dynamical variables—this is another step in the modeling process which has
to be motivated phenomenologically. Technically, we will introduce a completely
new model, though based on the same ideas, in which the old model reappears as
the special case .9 First, we would assume that each node’s population is
proportional to the space it is assigned: . Here, we implicitly intro-
duced the spatial population density . Furthermore, we would suspect that the
coupling strength should be anti-proportional to the squared distance between two
populations: . While the first is obvious, the latter might require a
more elaborated motivation.
9Which is, according to Albert Einstein, the most joyful thing that can happen to a theory: “Es

ist das schönste Los einer physikalischen Theorie, wenn sie selbst zur Aufstellung einer um-
fassenden Theorie den Weg weist, in welcher sie als Grenzfall weiterlebt.” (Über die spezielle
und die allgemeine Relativitätstheorie (gemeinverständlich), written 1916, published 1972,
Friedr. Vieweg & Sohn, Braunschweig, p. 47)

For this, let me further simplify the system to equal coupling strengths .
The results are valid for any couplings that are symmetric around the nodes, as
the observing reader will intuitively notice, but the motivation is much easier to
present when restricted to uniform couplings.

People are performing a continuous time random walk on the (one-dimensional)
lattice of cities: they jump from one city to one of its neighbors in the (infinitesimal)
time interval with probability (there are two links of strength ). It can
easily be shown that the expected displacement of a single person after random
walk steps is proportional to lattice sites.10 This corresponds to a spatial
distance since the lattice sites are apart from each other. But
we are not interested in the expected displacement after steps but rather in the
expected displacement after some time . So, how does relate to ? We can
easily calculate the time needed for steps from the so-called waiting times

between two jumps:

The waiting times are random and, therefore, so is , but if we knew the expecta-
tion value of we could calculate the expected time needed for jumps. It can
be shown11 that the waiting times are exponentially distributed with
and thus

10Consider a (discrete time) random walk process on a lattice where the walker performs a jump
to the left or to the right with equal probability in each time step. Starting at , the
position of the walker after steps is where is the distance moved in
jump , either or , both with probability . The expected position after steps is

, which is not surprising. More interesting is the second

moment of the position, . It indicates the “range” of
the random walker: the larger the second moment, the further away from the starting position
you can find the walker without being substantially surprised. It is therefore also referenced
to as the expected displacement after steps.

11Let be the probability that a jump occurs in the (infinitesimal) time interval
. Since is the probability for a jump occurring in a time interval of length , we

can write where is the probability that a jump does not occur
within . Dividing this interval into small pieces of length , in each of which the
probability of not jumping is , we obtain an expression for and

by calculating the joint probability of not jumping in any of the pieces and taking
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Figure 2.6: The limit of fitting an infinite number of infinitesimally small
populations into a finite space.

Remember the expected displacement after steps, , which we can
now write as

This expected displacement should be invariant under changes in : Redistribut-
ing people within the length by changing the underlying lattice should not hinder
any person to travel the distance within time —although it would not be the
same number of jumps. Thus, for two different lattice spacings and and
two travel rates and the relation must hold and thus

If we start with a linear chain of cities each apart and then change to a
linear chain of cities with distance , we have to replace the travel rates

the limit :

For a more general derivation of this result see [Gil76].

with :

d

In the limit (Fig. 2.6) we obtain continuous variables and and
the right hand side will converge to the second spatial derivative—resulting in a
diffusion equation. For conventional reasons, and to make it easier to distinguish
between the diffusion coefficient in the continuous system and the travel rates in
the discrete, I define :

d

Up to now we have restricted ourselves to couplings that are symmetric around
the nodes. We will now relax this constraint by reconsidering biased couplings:

, the coupling from city to , and , the coupling from city to .
We can introduce two new variables,

The idea behind those definitions is to separate the travel events into undirected
diffusion and directed drift. The first, , is the travel rate out of city disregarding
direction, or, in other words, it is the number of travel events per time unit in one
direction, for which there is a compensating travel event into the other direction.

is thus the “diffusive part” of the travel behavior. The second, , is a measure
for the “directedness” of the coupling around city . More specific, is the
probability rate for travel events that go to the right (if ) or to the left (if

) for which no compensating travel event in the opposite direction occurs.
We can reconstruct the original coupling strengths from our new variables, but

we have to distinguish two cases:

if
otherwise

if
otherwise

Inserted into the discrete mean-field equation (2.3), we obtain for the case
( :

d
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In case we have

d

How does this equation look like in the continuous limit? Similarly to the ap-
proach taken above, we can substitute population numbers with densities .
Since the are to be interpreted as effective diffusion travel rates, we can replace

with as motivated above. Also, in a similar reasoning we can motivate
that should be replaced with . Why does come in linearly instead of
squared? Assume a homogeneous linear chain with and . There is
no normal diffusion in this system and all movements are governed by the directed

. Thus, after steps, a person has traveled the distance . Simi-
larly, after time , the person has traveled the distance . Obviously,
when decreasing , has to be increased proportionally in order to conserve

. Thus, the mean-field equation for arbitrary lattice spacings reads

d

which in the limit becomes the general Fokker-Planck equation consisting
of a diffusion term already seen above and a drift term that accounts for the
asymmetry of the coupling strengths,

(2.4)

So, now we have a nice and shiny equation describing the time evolution of the
distribution of people spread over an infinite one-dimensional space for given local
diffusion coefficients and local drift coefficients . But we have somehow
degraded to a post-revolutionary kind of society where everybody is equal—though
this might be compelling for politicians and human rights activists, this is certainly
counterproductive from the epidemiological point of view. The solution to com-
bine the society of classes with a spatially continuous metapopulation model is
intuitively obvious—with the local densities of susceptibles, , and infecteds,

, the spatially continuous one-dimensional mean-field SIS model is given
by these two partial differential equations:

(2.5)

In general, the dynamics of a spatially continuous compartmental mean-field model
is described by

where is the vector of local densities of different population classes,
is the local reaction term, also referenced to as the local interaction term, and
the vector symbol above the diffusion and force coefficients indicate that it is
possible to have different diffusion and force strengths affecting the different types
of individuals (we will indeed exploit this differentiation later).

2.5.1 Travelling Waves in Spatially Continuous Systems

Now that we have found some nice and compact analytical models, let us dissect
them. In the following, we will assume that in the SIS model with global diffusion
and no drift there exists a stable wave solution, i.e., the function describing
the spatio-temporal evolution of the density of infecteds is in fact a function of one
variable of the form with where is the wave front velocity. The
partial derivatives of this function can then be substituted,

d d

and the second of the equations in (2.5) (with and and )
becomes a second-order ordinary differential equation:12

d d

We now define d and obtain the following set of first-order ODEs of two
variables:13

d d

What do these two variables represent in physical terms? By construction,
is the wave form of the travelling wave, since for a fixed , e.g. , it is the
population density profile . Also, it describes the local time evolution of the
density of infected people, since for a fixed , e.g. , . Note that

is describing the backwards evolution (the argument is ), we therefore expect
and , i.e., a location will have no infecteds at

, will be infected by people diffusing into this location and end up with
the equilibrium density at .

12In the following, I use again rather than to denote the total population density.
13The Greek iota is pronounced with a j at the beginning, thus is the best choice to denote

something related to . If you think that the two symbols are difficult to distinguish visually,
or at least that there are better choices, go back to page 14 and read footnote 8.
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2.5. Indiscrete Models: From Compartments to Continuous Variables

The system is in equilibrium if d and d , which is, not surprisingly,
the case for and . A linear stability analysis will tell us
about the type of these fixed points.14 The Jacobi matrix of the system is given
by

d d
d d

and its eigenvalues at the trivial fixed point are obtained from

which has the solutions

For the other fixed point we find the eigenvalues in

14I do not want to dwell too much on linear stability analysis—here is a really quick and dirty, fig-
uratively speaking overview: The Jacobi matrix is the derivative of a multi-dimensional
function, here , d d . Thus, evaluated at a certain point , the Ja-
cobian simultaneously indicates the slope of the two functions d and d for all directions

. Right-multiplication with a vector yields the vector d d indicating
the change of and along that direction.

To obtain a picture of how and evolve in the vicinity of a fixed point, we evaluate the
Jacobian matrix at that point, , and calculate its eigenvalues. Remember that, if
is an eigenvalue of matrix A and v is the corresponding eigenvector, the following relation
holds: Av v.

Thus, for A and v a small perturbation around the fixed point, it is
clear that along this direction v the perturbation will grow or shrink proportional to . A
positive eigenvalue indicates that the fixed point is unstable with respect to this direction,
since the system will move away from it, while a negative indicates an stable, attracting fixed
point (again, only with respect to this particular direction—since there are two eigenvalues
a fixed point may be stable with respect to one eigenvector and unstable with respect to
another, resulting in a so-called saddle point). Also, it will be intuitive to the reader that a
complex eigenvalue will somehow introduce some sort of oscillatory behavior due
to the factor .

For a more detailed and rigorous explanation I refer to the excellent book of Strogatz [Str94],
which is not only well-written and easy to understand, but also so entertaining that, in theory,
the interested and slightly autistic reader may read it solely for the purpose of recreation.
Though, admittedly, its price is about one order of magnitude larger compared to that of a
novel—probably super-linear with respect to their entertainment values.

The eigenvalues of the latter, non-trivial, fixed point are always real15 while the
eigenvalues of the former are real only for

min

This is an important result. Imaginary eigenvalues imply that the fixed point
is oscillatory, i.e., if min the solution will converge to the fixed point

in a damped oscillation around zero—which implies that will be negative
for some . This should not be the case since is a population density and,
luckily, is impossible by construction of the model. Thus, we can conclude that if
a physically meaningful travelling wave emerges from any initial condition in the
system, its velocity will be at least min. In fact, according to Murray [Mur89],
Kolmogoroff, Petrovsky, and Piscounoff have proven that for any initial condition
that has compact support and is zero for large positive and equal to for large
negative , a travelling wave with min will emerge, which I faithfully assume
to be correct.16

Up to now we have looked at spatially extended systems with local SIS dynamics,
but what about SIR-like diseases? Obviously, if the system exhibits travelling
waves as well, its form will be different. Since in the SIR model the number of
infecteds falls back to zero after some time, we would expect .
We can make a good argument that travelling waves exist in the SIR model as
well, since just as in the SIS model, with a small number of individuals at some
location in the system, there will be an exponential increase of infecteds due to
the reaction and diffusion will transport them towards neighboring
locations. Thus, wave solutions exist—but what about their speed? One might
tend to expect a slightly slower wave front because the lacking reaction
slows down the local reaction process after some time and thus less infecteds are
provided to be transported by the diffusion. But watch this: The only time where
we explicitly used the SIS model in the above consideration was when we utilized
the conservation law to replace in the equation. In the SIR model,
15Except for , but that is not really interesting anyway.
16Kids, don’t try this at home! This is evil Cargo Cult Science [Fey74]. But honestly, I don’t

really care about the details of this proof (nor about its correctness) because in all my simu-
lations the wave front speed came out to about min for the initial condition that I used (see
Sec. 3.2). Since my initial condition is slightly different, the proof does not help anyway and
the simulation results have to be seen as empirical evidence to the claim that, overlooking
their numerical errors, these simulations yield travelling waves with min.
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Chapter 2. Theory

the conservation law reads , but initially, there exist no recovered
persons and it takes some time until the infected people recover. Thus, the onset
of the wave will always be free of recovered persons since the wave will always
travel into regions of fully susceptible populations. And it is the onset of the wave
which is responsible for the wave propagation since only there the diffusion pushes
infected people into new areas. Therefore, since in the onset region and thus

, the recovereds have no significant influence on the wave speed. In fact,
we can harden this argument by pointing out that the fixed point in the SIS model
which linear stability analysis gave rise to the lower bound on the wave front speed
is the same fixed point that exists in the SIR model, namely
( was implicitly assumed above but has to be specified in the SIR model to
distinguish between the two fixed points before and after the local disease
outbreak). Thus, the analysis of the SIS model holds equally well for the SIR
model and the wave front speeds in both models are the same.

2.6 Populations that Realize: Different Response
Scenarios

In the following, I will introduce three different models that describe the dynamics
of a spreading disease in a population that is aware of the forthcoming epidemic
wave and reacts to it. In each of the models, a phenomenological approach is taken,
i.e., I do not explicitly model every individual’s reaction but motivate macroscopic
descriptions which can be interpreted to be emerging from a certain microscopic
behavior. These macroscopic descriptions are introduced in the framework of spa-
tially continuous mean-field model derived in the previous section.

2.6.1 Panic Reaction: Additional Diffusion

The first model uses a position-dependent diffusion coefficient that is proportional
to the density of infected people,

Here, is a parameter controlling the response intensity. The dynamics of a disease
will then be described by the partial differential equation already derived in Sec. 2.5
( denoting the local disease dynamics term),

in particular,

The locally increased diffusion can be interpreted as an undirected panic reaction:
the more infecteds are at a person’s location, the higher the probability that this
person will run away—in whatever direction.

2.6.2 Directed Flight: Gradient Force

In contrast to the undirected panic flight, it would seem more appropriate to model
something like a directed flight where people run away from the forthcoming wave.
One way to create such a model is to introduce a drift that is proportional to the
negative spatial derivative of the density of infecteds,

Thus, people will have a higher probability of travelling towards regions with lower
density of infecteds. The parameter is used to control the strength of the popu-
lation’s response. The dynamics of an SIS-like disease with directed flight reaction
will then be governed by

2.6.3 Strategic Flight: Integral Force

The third strategy I want to investigate is similar to the previous one in the regard
that both add a drift term to the dynamical equation. However, the force in
the directed flight reaction was local and thus responses were restricted to an
already arrived disease. Here, I will introduce an alternative drift function that
models a more foreseeing, strategic flight reaction: People will already flee when
a forthcoming epidemic wave is still some distance away. To implement this, we
express the drift similarly to a gravitational force with the infecteds serving as a
repelling mass:

ˆ

d

The integration kernel must of course be a function that quickly goes to
zero as . It determines at which distances the mass of infected people will
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2.6. Populations that Realize: Different Response Scenarios

Figure 2.7: Integration kernel used in the strategic flight scenario.

have stronger or weaker repelling effect. If is a Gaussian with mean zero,
, the effect is somewhat similar to the gradient force:

People are forced into the direction where less infecteds are and the force is stronger
if the difference between the number of infecteds on both sides is greater. However,
if the kernel is a function that is small around zero and raises to a peak at max,
it will model a special kind of behavior: People will flee from a forthcoming wave if
it is sufficiently far away, but if the wave is too near the kernel reduces the repelling
effect of the infecteds and people will not flee anymore—they give up and stay in
the infected area. In this study, I use a sum of two Gaussians,

max max

where max and are parameters and is an appropriate normalization constant,
such that

´

d .

2.6.4 Corresponding Strategies in Stochastic Models

In order to compare the results of simulated spatially continuous systems with
stochastic simulations, we need to translate the models motivated above into
stochastic formulations. From the derivation of the Fokker-Planck equation in
Sec. 2.5 we can see that there is a general rule to create a corresponding stochas-
tic model. For any given diffusion and drift functions and (which
may be time-dependent, of course), we have to discretize them into coefficients

and and then define travel rates as

sgn

sgn

Put in words, this means that the travel rates are both set to the diffusion coefficient
and then the drift term is added to the travel rate into the right (left) city if the
drift coefficient is positive (negative). For notational simplicity I define a modified
Heaviside function

else

Applied to the three response strategies this implies that the panic reaction is
modeled by

The directed flight strategy, where , translates into

Note that I used the forward discretization of the first derivative for the travel
rate into the right city and the backward discretization in the other case—the
more intuitive approach would probably have been to use the centered difference

in both cases. But this has an interesting advantage: The
observing reader may note that the two equations look alike and can be merged
into one single equation describing the travel rate from city into city :

Thus, the travel rates are formally independent of the geographical order of the
nodes. If we set , the geographical notion completely disappears from
the equation and we have generalized the directed flight strategy to arbitrary
networks—though, of course, only in the case of a linear chain it would be the
stochastic equivalent of the spatially continuous model introduced above.

The strategic flight behavior can also be translated into stochastic terms and the
interested reader will be able to easily figure this out, but since no comparative
simulations have been performed by Rafael Brune for his diploma thesis [Bru08], I
will omit it.
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3 Methods
This chapter is divided into three parts. I will first present some general concepts

for numerically solving partial differential equations that exhibit travelling wave
solutions. Afterwards, I give the methodological details used in my study. The last
section investigates some numerical details of the implementation which are not
so important for understanding and interpreting the results.1 In the next chapter,
I also compare my results to those obtained by Rafael Brune in his stochastic
simulations. For a derivation and explanation of the utilized methods I refer to his
diploma thesis [Bru08].

3.1 Concepts

3.1.1 Solving Ordinary Differential Equations

Ordinary differential equations are of the form

d

and their solution is obtained by integration
ˆ

d

Unfortunately, some functions refuse to be analytically integrated and here
numerical integration comes into play. The basic idea is to discretize the differential
equation to

and obtain the solution for a given initial condition by subsequently summing
the pieces,

1Here, “not so important” is a euphemism for “completely irrelevant,” but the investigation yields
some interesting insights and therefore I included it anyway.

Of course, this so-called Euler method gives only an approximation (it linearly
extrapolates the slope of at time over the whole interval ), but for
the solution obtained by numerical integration converges to that of the analytical
integration. Thus, for sufficiently small , the numerical solution is a good ap-
proximation. Note, however, that a smaller implies more computational effort,
i.e., longer computing time, since more terms in the sum have to be calculated.

How good the approximation is can be seen when doing a Taylor series expansion
of . We expand around and our small deviation from will be . Then, the
Taylor expansion reads

d d d

Here, d reads “the -th derivative of evaluated at ” which is a scalar value
(remember that is a fixed value here and that is the independent variable
of the expansion). Now, this was easy: The first two terms are identical to the
discretized differential equation of the Euler scheme. Thus, in each step, the Euler
scheme drops terms of and thus is only accurate to first order in .

We would improve accuracy to second order if we were able to calculate the
second derivative d , which is d . This we can write as

d d

Unfortunately, the function might be so nasty that it not only refuses to
be analytically integrated but also does not want to be differentiated—not even
partially. But we might be able to find an approximation. The (two-dimensional)
Taylor expansion of reads

With and we get, to first order,

23



Chapter 3. Methods

Note the d hiding in the second term. What we have here is the derivative
of at the midpoint between the times and where the value
is approximated by an Euler step. Replacing in the Euler step with this
midpoint derivative yields an update rule proposed by Carl Runge in his interesting
1895 paper [Run95] and also known as the midpoint method,

d

Since d , this update rule agrees with the Taylor expansion of up
to second order.

By choosing alternative values for and , namely and ,
we obtain, to first order, an approximation of d :

This we can plug into the Taylor expansion of yielding another second-order
update rule also proposed by Runge in the same paper, but known as the Heun
method, named after Karl Heun who published it again in 1900 [Heu00],

The basic idea here is to do an Euler step across the whole interval , then
evaluate the derivative of at the end of the interval and redo the update step
using the mean of the derivatives at and .

Thus, we have two mechanisms to improve accuracy: One is to use the slope at
the midpoint of the interval, which requires an estimation of at the midpoint, and
the other is to incorporate a second slope into the linear extrapolation. Intuitively,
it should be possible to add more slopes into the extrapolation or include differently
estimated midpoint slopes to further improve accuracy. In his 1901 paper [Kut01],
Martin Kutta systematically generated a class of discrete update rules that use
different combinations of the two mechanisms to reproduce more and more terms
of the Taylor expansion of This class of update rules is now known as the
Runge-Kutta methods and the most famous is the following, accurate to fourth

order:

The first, , is the slope at the start of the interval, i.e., the slope used in the
Euler method. The next two are both slopes at the midpoint of the interval, but
is calculated with estimated by the slope , i.e., similar to the Runge
method. Finally, is the slope at the end of the interval as in the Heun method
and the slope used for the final update step is an average of the four derivatives with
an emphasis on the two midpoints. According to most lecture notes introducing
this classical Runge-Kutta method, the proof of it being accurate to fourth order
is “beyond the scope of this document” and “simple but tedious,” involving the
two-dimensional Taylor expansion of up to third order which produces the
terms of the expansion of up to fourth order. But they always point out that
it can be found in “advanced texts.” Thus, I will simply trust the large number of
scientists who have already faithfully used this method.2

3.1.2 Solving Partial Differential Equations

With the methods described above we can solve ordinary differential equations but
the systems I want to study are always described by partial differential equations
involving both temporal and spatial derivatives. However, the problem of solving
partial differential equations can be reduced to the problem of solving ordinary
differential equations: We revert the process of going to the continuum limit made
in Sec. 2.5 and discretize the space axis into lattice sites with locations

. Now, the density of infected people is again represented by a
discrete set of functions which form a set of coupled ordinary differential
equations solvable by the methods described above.

In practive, how is this spatial discretization achieved? There are three possibil-
ities: the forward difference

2Sorry, Feynman.
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3.1. Concepts

the backward difference

and the centered difference

Each of them converges to the exact derivative in the limit . The first two
(asymmetrical) approximations are exact to first order, as the observing reader
will quickly figure out by looking at the (one-dimensional) Taylor expansion of

in for fixed time . The centered difference, as the average of the two
first approximations, is accurate to second order since in the Taylor expansion the
second order terms cancel each other:

Thus, the centered difference is the more accurate choice for discretizing the partial
derivative.3 Of course, in addition to the initial condition which provides
initial values for at each site, we also have to specify boundary conditions

and for all times to calculate the centered difference at
and (where is the number of lattice sites used in the discretization).

The diffusion term of the equations introduced in Sec. 2.5 also involves the second
spatial derivative. Of course, we could use the centered difference of centered
3The observing reader may object that we could use the backward difference for the time deriva-

tive as well (instead of the forward difference used in the Euler and Runge-Kutta methods),
or that we should use the centered difference. The problem is, that, in the notation of the
last section, we then gain equations like

where the variable of interest, , is implicitly defined (it appears on both sides of the
equation, thus we would have to solve the equation for ), or

for which we would need two initial conditions and . That might not seem
to be a problem, but while we can choose freely to select one of trajectories that are
solutions of the equation, the second initial condition has to be a point on the
same trajectory (which is unknown a priori). Thus, unless you have a well-behaved system,
where the backward difference, leading to the implicit update rule, might be advantageous, it
is best to stick to the forward difference, yielding a straightforward explicit update rule.

differences around and . But then, the calculation of the second
derivative involves the values of at five sites: , , and . For
this we would need additional boundary conditions that extend two sites beyond
the lattice instead of only one. Instead, we can use the backward difference of
forward differences,

to obtain a compact symmetrical second derivative which is accurate to second
order:

It seems that we have all the necessary tools for solving partial differential equa-
tions now, but there is one thing still to consider: The two discretizations and

cannot be freely chosen, as we will see in the simple diffusion equation

The solution can be written as a complex Fourier series, i.e., we compose the
function by using time-dependent coefficients to spatially oscillating exponentials,

Then, discretizing the diffusion equation yields
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The second equation states the discretized update rule for the Fourier coefficients,
obtained by plugging the Fourier series into the first equation and then individually
equating the terms for each mode . We see that the mode amplitude is amplified
by a factor

If this factor’s absolute value is greater than , the corresponding mode will be
amplified in every time-step and the simulated system quickly explodes into a
sparkling cloud of nan and inf values. How can we prevent such a disaster? If

the factor will be —and there is no possibility for it to be larger
than unity. Thus, the worst case is and we wish the factor to be
larger than in this case, i.e.,

This inequality imposes a restriction on how small we have to choose for a given
if we want a numerically stable solution. The presented method is thus named

von Neumann stability analysis—after John von Neumann, who developed it for
Los Alamos’ Manhatten.

3.1.3 Following Travelling Waves with a Moving Simulation
Window

The systems under investigation in this study exhibit travelling waves. As shown
in Sec. 2.5.1, the wave form approaches fixed points for . Thus, if we
discretize the system into an infinite lattice, most sites will have values , and
very close to either of the fixed points. The real action takes place only in a small
confined area min max, in which the wave front currently is. Outside this
area, the change of etc. is essentially zero. Thus, instead of simulating a large
lattice over which the wave travels, it should be sufficient to simulate only a small
number of lattice sites around the wave front4 and move the simulation area as the
wave travels towards one end, which is realized by removing one lattice site from
the left end of the system and adding one lattice site to the right end (assuming
the wave travels from left to right). This technique allows the observation of the
wave for arbitrary long times.
4Of course, the lattice still has to be large enough to cover the complete area that influences the

dynamics. A detailed investigation on this will be presented in Sec. 3.3.

3.2 Details

This section briefly provides various details on how I applied the methodological
concepts to the theoretical framework derived in Chapter 2.

Following the considerations from the last section, it seems appropriate to use the
classical fourth-order Runge-Kutta method for integrating the system of coupled
ordinary differential equations obtained by the spatial discretization for which, of
course, the centered difference equations were used.

As initial condition, a completely susceptible and homogeneously distributed
society was implemented and a small amount of infected people placed into the
left-most site of the simulation area: , ,

. From this initial condition, a stable wave front emerges after some
equilibration time. To follow the wave front, the moving simulation window algo-
rithm described above was implemented. Initially, the simulation area covered the
space min max with min max. The site with at was
used as an anchor point for the simulation window. When using a model with a
non-zero fixed point (SIS), the simulation window was shifted by one lattice site if
the density of infecteds at the anchor point exceeded half of the fixed point value.
With models in which the density of infecteds is zero on both sides of the wave
(SIR), the window was moved if the maximum of infecteds was at a site with .
In each window shift, a fully susceptible lattice site with total population density

, i.e., identical to the initial condition, was added to the right.
Regarding the boundary condition, I assumed , and

analogously for and . In other words, beyond the right end of the simulation
area, a fully susceptible site was assumed for all times , which is consistent with
the moving window implementation. To the left, I assumed ,
i.e., the first site beyond the left end was assumed to be identical to the left-most
site within the simulation area. This is consistent with the fact that the wave form

converges to a constant value for .
The implementation of the additional diffusion in the panic reaction scenario and

of the gradient force in the directed flight scenario is straightforward—of course
using the centered difference for calculating the gradient force. For the calcula-
tion of the integral force in the strategic flight scenario some simplifications have
been made, since computing the complete integral for every evaluation of the right
hand side of the differential equations is computationally extensive (the number of
operations scales with , since for each of the sites the integral has one term
for each site). The most intuitive way to compute the integral force at some place
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would be to iterate for each lattice site over a small neighborhood
and add up all the terms for each site to the integral value at site . However, in
the implementation I reversed the order of the two iterations: For each lattice site
, terms were added to each site if, and this is the simplification,

the density of infecteds at site , , was above a certain threshold int .
This way, a lot of low-impact terms could be skipped. Also, the calculation of the
integral force was performed only once for each of the Runge-Kutta steps and not
for each of the four sub-steps, i.e., not for each individual evaluation of .
Finally, in the two-dimensional simulations, the kernel function was precom-
puted for integer values of and later the kernel values for arbitrary real values
of were approximated by the precomputed value of the largest smaller integer,

. By using a precomputed lookup table, the time-intensive calculation of two
exponential function values per integral term could be avoided. Furthermore, the
lookup table was truncated at some value for which was negligibly small
(i.e., for which the integral term would not add any significant value to the total
integral). This also lead to a significant reduction of the number of integral terms
to be calculated.

For measuring the wave front speed and form with different underlying mod-
els, response scenarios and response strengths, I set up one system per model and
scenario. After some initial equilibration time with response strength zero, I mea-
sured the wave front velocity by stopping the time needed for a predefined number
of window shifts. Then, iteratively until the full parameter range of interest was
covered, the response strength parameter was increased by a small amount and
the velocity was measured again after another short equilibration time. After each
velocity measurement the (equilibrated) wave form was recorded.

For obtaining the phase diagram of the strategic flight scenario, I set up a sys-
tem and triggered an outbreak at . To prevent an arbitrary
small amount of infected people leaking through an evacuated low-density region
and causing an outbreak on the other side, an infection threshold was used, as
explained in the next paragraph. The simulation was carried out until either the
simulation time exceeded max or at each lattice site the density of infecteds
dropped below the infection threshold, in which case the disease was considered to
be extinct. I measured the maximum total population density and the maximum

which had infected people during the simulation. If the density of infecteds at
min min exceeded the threshold value , the simulation window

was moved.
In the density formulation of the models (as opposed to absolute numbers of

susceptibles, infecteds and recovered) very small densities occur, which already
have a significant impact on the dynamics—even the smallest non-zero density of
infecteds triggers an exponential growth of . However, in the stochastic system,
a population cannot be infected unless at least one infected individual is brought
into the population. We can capture this in the density formulation by introducing
a threshold and insisting on to allow infections. The differential equation
for the density of infecteds in the SIS system with threshold reads

d

Of course, the factor , which is for and otherwise, also appears
in the corresponding term in the equation for d . The threshold will have a
significant effect not only on the outbreak dynamics as mentioned above, but also
on the equilibrium behavior of the system, as we will see in the next chapter.

Finally, I introduced another parameter to play with. In the equations for d
and d , the response strength parameters and were replaced by and
where is a binary switch (either or ) stating whether the flight behavior
applies to infecteds as well. Thus, I was able to investigate the difference between
the cases where everybody is running away from a forthcoming wave front or where
only the susceptible individuals run away. Also, this additional parameter will
turn out to have significant impact.

A few simulations have been performed in two spatial dimensions where
with . The mean-field equations for this case arise naturally

from the one-dimensional equations by replacing the spatial derivatives with the
Nabla operator :

d

Similarly for d and d and in the definitions for in the different response
scenarios,

¨

d

Also, the discretization for the numerical solution arises naturally: The underlying
lattice is two-dimensional and the partial derivatives and are both replaced
by centered differences.

Unless otherwise specified, , , and was used in all simulations.
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3.3 Details’ Details

Choosing the right and can be a difficult decision since it involves a trade-
off between computation time and accuracy. In the following, I want to present
a systematic investigation on how the discretization details impact the accuracy
of the measured wave front velocity. The effects are very subtle, too small to be
relevant for the results presented in the next chapter, so you might as well skip
this section—unless you are interested in unimportant (but interesting) numerical
details.

Figure 3.1 shows simulated trajectories of single SIS and SIR populations with
different time steps using the Euler method. The density of infecteds increases
superlinearly for small times and thus, in each step the Euler method underesti-
mates the derivative of in the interval . This explains the delay in the
raise of infecteds and the time at which the window shift criterion is first fulfilled
(Fig. 3.1, right). Using the Runge-Kutta method will of course improve accuracy,
though qualitatively the effects are the same. Therefore, we would expect that a
large leads to a slower wave front velocity in our spatially continuous system,
since the infection dynamics run slightly slower.

Next, I investigated the impact of the lattice spacing on the time scales in
simple diffusion governed by the equation . A test area
was set up and initialized with a discretization independent amount of individuals
at the center, , . To avoid significant
errors from the time discretization, a small time step was chosen. After
large time, the diffusion levels the peaked population distribution to a constant ,
thus the time where is half of can be interpreted as a measure
for the diffusion speed. Figure 3.2 shows the simulation results for various .
Since the measure time increases with we would again expect a slower wave
front velocity for larger lattice spacings.

This hypothesis was tested using the SI model5 in a simulation area of length
with min and max represented by lattice sites.

I equilibrated the system until 10 shifts of the moving simulation window have
occurred and then the measurement was carried until the window has moved by
one area size , after which the wave front velocity is , where is the
time needed for the measurement.

5As indicated in Fig. 2.3 on page 12, the SI model has no recovery reaction and therefore
runs into a stable fixed point with . It is expected to exhibit travelling waves with
velocity min

Figure 3.1: Accuracy of SIS and SIR time evolution. The two left plots show the
time evolution of the density of infecteds in the SIS (top) and SIR (bottom) model for

and obtained with different time discretizations . In each simulation, the
time when the density of infecteds first exceeded half the fixed point density (SIS) or first
dropped below the value from the previous time step (SIR) was measured. These times
are visualized in the right plot: Dots show the real measured time and lines indicate a
refinement obtained by linear interpolation.

Figure 3.2: Accuracy of simple diffusion. For different spatial discretizations in
a system of size and initial population density distribution ,
the time was measured where first .
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Figure 3.3: Accuracy of the speed measurement: Euler. For the first measurement
method described in the text (simulation area with , equilibration for
10 window shifts and measurement for window shifts), the observed wave
front velocity in the spatially continuous SI model ( , ) is shown for different
values of the time step and the lattice spacing . The top left figure gives an overview
of the speed surface, the top right shows the absolute deviations from the analytical value

. The diagonal line indicates the stability criterion for the
ordinary diffusion equation (except for the small at , missing points are
due to numerical instabilities). In the bottom row, slices from the data are presented for

(left) and (right), in comparison with the analytical value (green).

Figure 3.3 displays the results, which show that the measured velocity indepen-
dently converges for and . The wave appears slower for large
which is consistent with the above consideration. However, the velocity is higher
for larger values of . This can only be explained by the reaction dynamics:
Though the diffusion is slower for large , i.e., the site at will gain less
infecteds by diffusion than with a smaller , the exponential growth due to the
infection dynamics can outrun this. With a certain amount of infecteds at site

, after one time step there will be a small amount of infecteds carried over to
site and the exponential growth can take over. If is large, this neighboring
site is further apart and with a ten times smaller it takes nine additional time
steps until a non-zero density of infecteds is found at the site with the same .

Figure 3.4: Continuous velocity measurements in the SI model. The plots show
the velocity where denotes the number of window shifts between

and .

Also note that the asymptotic value of the wave front velocity is slightly below
the analytical value. The relative error is just 0.4%, so the results are absolutely
acceptable, but I was interested in understanding from where the error arises.
Instead of just measuring the velocity at the end of the simulation, I recorded
a velocity after every simulation time step, where
denotes the number of window shifts since the first shift at time .

Figure 3.4 (left) shows for and . Note that the measured
velocity converges from below to the “real” velocity. The inset illustrates the
saw-tooth-like fine structure of the curve. Each jump to a higher velocity corre-
sponds to a simulation window shift. After each shift only the time increases but
not the measured distance and thus the velocity decreases until the next window
shift occurs. Though the amplitude of this oscillation vanishes for infinite simu-
lation time, we can easily get rid of this effect by allowing velocity measurements
only in time steps with window shifts. This is not as arbitrary as it might seem
at first sight: At the time step where the window shift occurs we know the exact
time when the wave passed the position , where “passed” means “density of
infecteds fulfills the window shift condition” and “exact time” means “exact time
within simulation accuracy .” Thus, in the time steps with window shifts we
have the most exact knowledge of the wave front’s spatio-temporal position.

The right plot in Fig. 3.4 shows the velocity evaluated only at the time steps
with window shifts for two different initial conditions: First, the already mentioned
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Chapter 3. Methods

Figure 3.5: Continuous velocity measurements after long equilibration. The
setup was the same as for Fig. 3.4, but the equilibration was carried out for the time
needed for window shifts.

single-site initial condition given by

and second, a more equilibrium-like initial condition given by

min

One sees from the figure, that, as seen in the left plot, the velocity converges from
below for the single-site initial condition while the velocity measured after the tanh
initial condition converges from above. Please also note the longer simulation time
in the right plot. Although the velocity seems to converge fine in the left plot, we
can see in the right one that it significantly varies in the second decimal place—and
even in the first decimal digit with the tanh initial condition.

Apparently, the system is not in equilibrium yet. Therefore, I allowed for a
longer equilibration delaying the measurement until the simulation window moved
across an area ten times the lattice size (instead of only 10 single window shifts).
The results are shown in Fig. 3.5. Both initial conditions now have converged to
nearly the same value, differing in the fifth decimal place only. Interestingly, one
observes the same saw-tooth-like structure of the curve (remember that here I am
plotting only the local maxima of the saw-tooth structure seen in Fig. 3.4), which
is an undersampling effect: Due to the finite update time, the condition for the
window shift is not evaluated at every time but only at discrete times and thus
the statement “window shift condition satisfied at time ” is always to be read as

Figure 3.6: Continuous velocity measurements in large simulation areas. Again,
a long equilibration was done before starting the measurement in a simulation area with

(left) and (right).

“window shift condition was satisfied between and .” If the real time
that the wave needs to travel a distance of is not an integer multiple of the
simulation time step , the observed effect will occur.

Next, it is worth looking at the impact of the simulation window dimensions on
the wave front velocity. Up to now, I have always used min and max
as initial boundaries for the lattice. In Fig. 3.6 the measured velocity is plotted as
obtained by larger simulation areas and . Besides
the fact that both single-site and tanh i.c. now converge upwards, another effect
can be observed: the velocity seems to converge towards larger values in larger
simulation areas (again, note the different time scales).

This is further examined in a comparison of several different simulation area
setups using a slightly modified measurement process. Instead of just doing one
measurement process after the equilibration, both lasting as long as the simulation
window has shifted the distance of ten times the simulation area length, several
consecutive measurements were performed, each of which lasted as long as the
window needs for moving five times the area length. The results (Fig. 3.7, left)
show that the wave front velocity depends on the simulation area in front of the
wave but not on the area size behind the wave front, which is consistent with the
theoretical consideration at the end of Sec. 2.5.1. The first non-unity density of
infected people (i.e., the first site with density less than ) was always
found at position behind the wave. Interestingly, though also consistent
with the theory, even reducing the simulation area down to min , i.e.,
cutting off parts of the wave, does not impact the measured velocity.
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3.3. Details’ Details

Figure 3.7: Multiple consecutive measurements of the wave front velocity
in different system sizes. The inset in the right figure shows the logarithm of the
equilibrated values plotted against the size of the simulation area ahead the wave, i.e.,

max .

The right plot of Fig. 3.7 shows the density of infecteds at a site near the down-
stream end of the simulation window (to be specific, it is the site with max
where max of course changes with each window shift). As visible also from the left
plot, the equilibration process takes longer for larger max. The inset, showing the
equilibrated density for the different lattice sizes, reveals that for large the den-
sity falls exponentially. Thus, the equilibrated wave, in theory, extends over
the whole -axis. However, in the finite simulation area, the boundary conditions
impose that max and therefore significantly lower the (theoretical)
mass of infecteds ahead of the wave, which, following the argumentation for the
increasing wave speed with larger , leads to a slow down of the wave front.

Applying the insights gained from the previous simulations, Fig. 3.3 has been
reproduced using a larger simulation area and longer equilibration times, exhibiting
significant accuracy improvements as shown in Fig. 3.8. Furthermore, the same
simulations have been performed using the Runge-Kutta method (Fig. 3.9). As
expected, the velocity converges much faster as . Unfortunately, however,
the Runge-Kutta method only improves accuracy to the time discretization, while
the spatial discretization is untouched and exhibits the same convergence behavior
as with the Euler method—again, not a big surprise. Also note that the Runge-
Kutta method does not influence the stability criterion. Thus, for a small
that provides good accuracy, still a small has to be chosen to ensure numerical
stability and the Runge-Kutta method cannot unfold its full power.

Figure 3.8: Accuracy of the speed measurement: Euler, revised. As in Fig. 3.3,
but now with simulation area , equilibration for window shifts and
measurement for window shifts.

Figure 3.9: Accuracy of the speed measurement: Runge-Kutta. The slices in
the bottom row are for (left) and (right).
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4 Results

This page intentionally left blank.1

1Three design principles are the foundation of this chapter: First, since this chapter should
be free of generic methodological details and interpreting statements, and my results can be
nicely presented graphically, there is no need for any accompanying text. Figure captions
describe what is shown in the plots and give specific methodological details where neccessary.
Second, regarding the question of whether to show all results obtained in the study or only the
most important ones, I decided to provide a comprehensive survey while avoiding excessive
visual repetition by omitting qualitatively similar results from the plots. Third, I chose a
compact presentation form that visually groups strongly related results. Especially the double
page 36/37 might appear overcrowded at first sight, but I am confident that, after reading
the figure captions and understanding what the plots display, the reader will appreciate the
compact and comprehensive overview this highly structured presentation provides.
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Chapter 4. Results

Figure 4.1: Wave front speed in different response scenarios. Above: The plots visualize the
speed of the epidemic wave depending on the strength of the different responses in spatially continuous
SIS (top row) and SIR (bottom row) models. Lines depict the speeds obtained by mean-field simulations
(without threshold) and dots show the results from stochastic simulations by Rafael Brune [Bru08]. For all
cases, it has been distinguished between only susceptibles reacting to the upcoming wave front (green) and
a response of all individuals (red). For the strategic flight response, max was used. Right: Wave
front speed in systems with different infection thresholds . Solid lines depict simulations of SIS with
panic reaction of only susceptibles, contrasted against SIR with directed flight of all individuals (dashed
lines). Not shown: If, instead of simulating any of the three response scenarios, only the diffusion of
infecteds is reduced to some value , the system behaves as if for all people.
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Figure 4.2: Wave front shape in different response scenarios. Above: The plots
visualize the equilibrium form of the epidemic wave depending on the strength of the
different population responses of all individuals in spatially continuous SIS (top row) and
SIR (bottom row) models. Colors code the density of infected people. On top of the
color maps, the wave front shape has been plotted for different values of the response
strength parameter from (red line) to (green line). For the lines, the -axis (density
of infecteds) is given by the color band labels and the -axis is stretched by a factor of 2,
i.e., the lines are plotted for . Below: Same as above, but for different pa-

rameters max of the strategic flight response and also with only susceptibles reacting
(center and right). Contrary to above, here the lines are plotted unstretched for

. Also, different to panic reaction and directed flight, in simulations with the
strategic flight the simulation window moved everytime the density of infecteds at the
site with (initially) exceeded . Furthermore, the plots show only snapshots
of the wave front shape , which is not necessarily time-independent in the strategic
flight scenario. Not shown: With panic reaction or directed flight by susceptibles only,
the effects are qualitatively the same as above.
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Chapter 4. Results

(part of Fig. 4.4)

Figure 4.3: Initial SIR outbreak dynamics in the strategic flight scenario with response of all individuals. The plots show the spatio-temporal evolution of
the density of infecteds , density of susceptibles , and maximum density of infecteds of SIR dynamics with and and strategic
flight response of all individuals with strength . The left column shows the unthresholded dynamics for and different values max . The
corresponding thresholded systems with produce similar results. In the right, max is shown for both the unthresholded and thresholded case.
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Figure 4.4: Initial SIR outbreak dynamics in the strategic flight scenario with response of only susceptibles. As in Fig. 4.3 on the facing page, spatio-temporal dynamics
of the SIR model are visualized. Both thresholded and unthresholded systems are shown for and max (from left to right, max being found on the facing page).

Figure 4.5: Parameter scan of the strategic flight scenario. For different response strengths and max simulations have been carried out in a
simulation area using the SIR model with strategic flight response with threshold until either or the disease was extinct ( for all sites ). The plots
visualize the simulation end time and the outbreak range ( for any ) for response of all individuals (left half) or response of only susceptibles (right half). The
green crosses mark the parameter sets whose dynamics are shown in detail in Figs. 4.3 and 4.4. Missing dots (for ) are due to numerical instabilities.
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Chapter 4. Results

No Response

Panic Reaction(You should print on white paper!)

Directed Flight

Strategic Flight

Figure 4.6: Qualitative picture of the outbreak dynamics in different response scenarios. Each horizontal image series present snapshots of the density of susceptibles
(green) and infecteds (red) for different times (early pictures left, later pictures right). The simulations were carried out on a two-dimensional lattice using the SIR model with

and . The scenario parameters were chosen large enough to distinctively show their effects. In each case, a small amount of infecteds has been placed in the lower left
corner as the initial condition. Note that the density of recovereds is not visualized, thus a black spot in the image may indicate a total population density of but where almost
all people are recovered (as inside the circular epidemic wave) or a vanishing total population density (as in the ring ahead of the epidemic wave in the strategic flight scenario).
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5 Discussion
The results presented in the previous chapter point to some general conclusions,

which I will state in the following. Also, I will give explanations to understand the
model’s mechanisms producing the observed effects. Afterwards, the relevance of
the presented work is briefly discussed and the chapter closes with a short outlook
to future work on this topic.

5.1 Conclusions

Regarding the equilibrium dynamics (Figs. 4.1 and 4.2), we can clearly see that
the panic reaction and directed flight responses consistently lead to an increase of
the wave front velocity. There are two mechanisms causing the acceleration. First,
infecteds running away from an infected location lead to a faster physical transport
of infecteds and thus, obviously, to a faster disease spread. Second and more subtle,
since the response effect is local (either locally increased diffusion or a drift along
the wave front that vanishes at the front’s onset), a crowd of susceptibles will gather
close to the wave front. Due to the increased density, the infection dynamics
will run faster in this area and therefore new infected people, which can then
diffuse further downstream, are available earlier than in the scenario without any
population response. The second effect is of course the only acceleration mechanism
in the case of only susceptibles reacting to the upcoming wave front.1

1The observing reader may have noticed that for the panic reaction of all individuals my results
perfectly agree with the stochastic simulations by Rafael Brune (except for small , which
can be explained by an implicit infection threshold present in Rafael’s system). However,
for the directed flight of all individuals, the results slightly differ, which can be explained
by subtle differences in the implementation details (Rafael used different discretizations of
the first derivative to calculate the gradient force, depending on the drift direction (as shown
in Sec. 2.6.4), while in my simulations the centered difference was used in all cases). More
severely, however, is the difference of the results in the cases where only susceptibles are
reacting—particularly visible in the directed flight scenario but also present in the panic
reaction scenario, though, due to the lower wave front acceleration, not as distinct—for which
I cannot provide an explanation (yet). It is possible—though rather unlikely, of course—that
either I or Rafael made a mistake in our implementations, or maybe a true stochastic effect
that we have not yet understood appears in this scenario.

Also, we can see from the results that an infection threshold has significant im-
pact on the wave front velocity for small response strengths. This can be explained
by the fact that in thresholded systems diffusion has to carry a defined mass of
infecteds to a currently susceptible site before the exponential growth due to in-
fections can take over—contrary to systems without threshold where already an
infinitesimally small amount of infecteds is exponentially amplified. For larger re-
sponse strengths, the larger front velocity effectively leads to faster diffusion and
decreases the time between the first infecteds entering a site and the density at
that site exceeding the infection threshold. Thus, the wave front velocity in a
thresholded system converges to the velocity of the unthresholded system for large
response strengths (cf. Fig. 4.1, bottom right).

The snapshots of the equilibrium wave front shapes (Fig. 4.2) show that the two
local response scenarios lead to a distortion of the wave front, particularly a steeper
onset in the SIS model, caused by the faster diffusion and infection dynamics as
explained above, and larger wave form content

´

d in the SIR model. Thus,
more people are affected by an SIR-like disease at the same time. Obviously, due
to the larger front velocity, the total number of affected people in either SIS or SIR
model at a given fixed time ,

´

d , is consistently increased by the
population’s response.

The same conclusions apply to the strategic flight scenario for certain param-
eter sets max , but the bottom part of Fig. 4.2 indicates that this scenario
exhibits a richer dynamics than the local responses, as discussed in the follow-
ing. In particular, for some parameter sets, the wave form does not converge to a
stable solution but exhibit spatio-temporal oscillations.2 Also, in the initial

2In other words, if the function is interpreted as a dynamical variable J
with appropriate constant , in the corresponding phase space, which contains all functions
parameterized by, e.g., Taylor or Fourier series coefficients, there exists a function J for the
panic reaction and directed flight scenario such that J J , while for the strategic
flight scenario it seems that there is a closed set of functions J J , which can be
parameterized by a single variable, such that the smallest open set containing J and J
converges to J for . Obviously, since stable solutions in the strategic flight scenario
exist for certain parameter sets, J is possible.
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Chapter 5. Discussion

outbreak (non-equilibrium) dynamics, the strategic flight scenario exhibits a large
behavioral variety, strongly depending on the chosen parameter set max and
the infection threshold . As visible in Fig. 4.5, with the parameter space
splits into two phases at some critical response strength . One phase exhibits
traveling waves and one extinction of the disease. How can this happen? If the
infection wave runs into an evacuated region with a low density of susceptibles,
the infection dynamics do not exhibit exponential growth of infected people, but
exponential decay.3 Thus, in the evacuated region a disease is suppressed, i.e., it is
locally extinct. However, diffusion will always carry ridiculously small amounts of
infecteds beyond the evacuated area and thus triggers a new wave front after the
bottleneck, since there infecteds are exponentially amplified again. This can be
prevented by setting a non-zero infection threshold that requires a defined amount
of infecteds to trigger exponential growth. If the decaying wave front upstream of
the bottleneck cannot provide enough infecteds to quickly transport the required
amount beyond the bottleneck, the disease will globally die out.

The transition between both phases can be understood by looking at the non-
thresholded dynamics of the system. The space-time plots in Fig. 4.3 show, that
for fixed and increasing max an oscillation appears in the temporal evolution of
the wave front whose amplitude is growing with max. Since the oscillations are
conveyed to the density of susceptibles via the population’s response, for sufficiently
large oscillation amplitudes the total population density ahead of the wave will drop
below . Thus, with a non-zero threshold, the wave propagation can be stopped.

If not all population’s individuals are reacting to the upcoming wave front but
only the susceptibles (Fig. 4.4), the dynamics are further enriched. In addition to
the two phases observed in the scenario with everybody responding, a third phase,
in which growing oscillations can lead to a disease extinction, develops for large .4

In contrast to the extinction phase also observed in the scenario with everybody
responding, where a wave hits a single impassable bottleneck, in this new phase
the wave passes the bottleneck and strikes into a crowd of susceptibles beyond
the evacuated area. Since this crowd exhibits a larger population density than
upstream of the bottleneck, the density of infecteds will grow to larger values than
before, leading to a more intense response and a deeper bottleneck downstream.
If this bottleneck is also passed, the next bottleneck will be even deeper and so
3Remember from Sec. 2.3 that there is a critical density below which the trivial fixed

point becomes the only, stable fixed point.
4The simulations have been repeated with smaller discretization parameters and for a

selected parameter regime and produced similar results. I am therefore confident that the
oscillations are not a numerical artifact.

on, until, finally, an impassable bottleneck is created. Of course, in this phase, a
yellow spot in Fig. 4.5, indicating that the simulation was aborted at with
infecteds present in the system, does not imply that a stable travelling wave will
emerge.

5.2 Relevance
This study is telling the reader that if you have a system like one of those introduced
in Chapter 2, it will behave in a way such that, if investigated with the methods
presented in Chapter 3, the effects shown in Chapter 4 can be observed, which
might be understood by the arguments presented in Section 5.1. The study does
not tell you whether your system of interest actually is of this type. To decide this,
instead of investigating intrinsic properties of the purely mathematical model, its
basic axioms (assumptions) have to be empirically checked for consistency with
what most people call “reality.”

Clearly, the models presented in this work fail this check at least with respect
to what they claim to represent. As already mentioned in Chapters 1 and 2,
the spatially continuous diffusion framework does not correctly capture modern
human travel behavior and therefore cannot correctly predict the global dynamics
of a spreading disease, since it has been shown (e.g. [Huf04]) that modern travel
means have significant impact on this. However, to be precise, it cannot correctly
predict the effects of a population’s response in the real world, if the modern travel
opportunities have any relevance to the overall travel behavior of the population
of interest. An argument can be made that the simple diffusion framework might
be valid, i.e., consistent with reality, in the case of, e.g., a bio-terroristic attack
using a highly infectious disease. Here, the time-scale of the disease spread might
be faster than the time-scale of the long-range travel behavior—or the long-range
travel means such as air traffic and intercity trains might have been shut down
by the authorities. Also, simple diffusion models are applicable to many problems
in ecology [Bul02], where they, for example, describe the migration behavior of
animals.5 However, it is to be determined if the formulated response scenarios can
be found in ecological systems—or if they correctly represent human behavior in
case of an outbreaking disease.

In conclusion, the models studied in this thesis serve more as a toy model than
being useful as a realistic simulation tool. They can be used to investigate the
5At least of those that have neither been gifted with fast long-range travel means nor engineered

ones themselves.
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5.3. Outlook

effects of certain phenomenologically motivated population response scenarios in
the simplest framework of spatially extended reaction-diffusion systems.

The high-spirited reader might conclude from this study, that—given a real world
scenario that is correctly described by simple diffusion—people should stop running
away if the disease is coming too near, since this response behavior, corresponding
to the strategic flight scenario, will prevent a large-scale outbreak. I want to
emphasize that this is not the case—and cannot be by principal reasons. This
study, as any scientific study, tells the reader that certain systems do behave in
certain ways and not that certain systems should behave in a certain way. However,
it might be interesting to transgress the scientific boundary and discuss the ethics
of forcing people to a strategic flight response.

The strategic flight implies that people run away from the dangerous disease only
if they are sufficiently far away. They have to stop running away and surrender
themselves to the risk of infection if the wave front is too near. Obviously, since
the whole point of this behavior is to stop the outbreak and prevent more people
becoming infected, these people “sacrifice” themselves to save the larger population.
If people are forced to do this, their lives—or at least their health—is traded for
the lives or health of others, rendering the “sacrificed” persons a means to an end.
This contradicts Kant’s definition of human dignity and is thus unacceptable. Two
ways might provide an escape route from this dilemma: First, instead of forcing
people into a strategic flight, they could be informed about this behavior and
encouraged to do so voluntarily. In my opinion, however, it is difficult to cut
the line between “forcing” and “encouraging”—if there is any relevant difference at
all. The second option is the possibility of self-protection of “sacrificed” people. If
people can protect themselves against infection by, e.g., strictly staying inside their
homes or wearing protective masks, the information and encouragement approach
might appear less wrong. However, the argument can only be made if reliable self-
protection is available—forcing or encouraging people to stay if they only have,
say, a 90% chance of not being infected, is probably considered careless as well.
However, assuming that reliable self-protection is available, one can ask why a
strategic flight response is necessary at all in this case: Why should anybody want
to run away anyway if they can easily protect themselves at home? Probably the
only case in which an enforced strategic flight is useful and ethical is when reliable
self-protection is available in the threatened area but not in sufficient quantity
to protect everybody. In this case, people further away can be forced to move
away from the outbreak region while the limited self-protection devices/facilities
are moved towards the outbreak region to protect the people that have not fled.

5.3 Outlook
There are some interesting possible follow-ups to this study. The most important is
to replace the simple diffusion with a more realistic model of human travel behavior
and see if the response scenarios still exhibit the same or at least similar effects.
Two general approaches can be undertaken to achieve this.

The first option is probably the easiest and most straight-forward. The panic
reaction scenario is canonically defined in a network and the directed flight scenario
can also easily be generalized to arbitrary networks by choosing a proper discretiza-
tion scheme for the gradient force, as shown in Sec. 2.6.4. However, a meaningful
network equivalent of the strategic flight has still to be thought of. Furthermore, it
is hard to measure a wave front velocity in an arbitrary network. Thus, new mea-
sures of response impact have to be defined. Interesting and relevant quantities
might be the total number of people affected by the disease, the number of infected
people at a given time, and their spatial extent at a given time. They indicate the
overall “seriousness” of the pandemic, the momentary load on medical facilities,
and the range over which possible physical counter-measures like vaccines have to
be distributed. For measuring the last quantity it is of course necessary to have
a geographically embedded network. Empirical data for estimating human travel
rates between cities or countries can be obtained by various means such as evalu-
ating air traffic data [Huf04] or databases of, for example, the dollar bill tracking
game “Where’s George?”6 [Bro06] or the real-life adventure game “Geocaching”7.

The second option is a somewhat different ansatz. The regular diffusion is re-
placed with superdiffusion, i.e., agents on a linear chain or regular grid do not
perform random jumps of equal step size, but the length of each jump is randomly
distributed as well. In particular, the jump lengths might be distributed according
to a power law. Then, the resulting trajectories of superdiffusive random walkers
exhibit a lot of very small steps and a few very large jumps. These superdiffusive
long-range jumps can be interpreted as train rides or flights. The advantage of
this approach is that it can also be defined in the spatially continuous framework,
making it unnecessary to reformulate the response scenarios.

Furthermore, in both approaches, a fourth response scenario, in which the proba-
bility of a person performing a long-range jump is influenced by the disease preva-
lence at the person’s current location or in its environment and at the person’s
potential jump target or in its environment, can be investigated.

6http://www.wheresgeorge.com/
7http://www.geocaching.com/
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